[1] Ayari, J., M. Barbieri, A. Barhoumi, W. Belkhiria, A. Braham, F. Dhaha, and A. Charef. (2022). A regional-scale geochemical survey of stream sediment samples in Nappe zone, northern Tunisia: Implications for mineral exploration. Journal of Geochemical Exploration, 235,106956.
[2] Saremi, M., S. Yousefi, and M. Yousefi. (2024). Combination of geochemical and structural data to determine the exploration target of copper hydrothermal deposits in the Feizabad district. Journal of Mining and Environment, 15(3), 1089-1101.
[3] Carranza, E.J.M. and M. Hale. (1997). A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60(2),157-171.
[4] Yousefi, M., E.J.M. Carranza, and A. Kamkar-Rouhani. (2013). Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. Journal of Geochemical Exploration, 128,88-96.
[5] Ranasinghe, P., G. Fernando, C. Dissanayake, and M. Rupasinghe. (2008). Stream sediment geochemistry of the Upper Mahaweli River Basin of Sri Lanka—Geological and environmental significance. Journal of Geochemical Exploration, 99(1-3),1-28.
[6] Yousefi, M., A. Kamkar-Rouhani, and E.J.M. Carranza. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1),45-58.
[7] Yousefi, M., A. Kamkar-Rouhani, and E.J.M. Carranza. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115,24-35.
[8] Daviran, M., R. Ghezelbash, and A. Maghsoudi. (2023). GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering. Geochemistry,126036.
[9] Chen, Z., Y. Xiong, B. Yin, S. Sun, and R. Zuo. (2023). Recognizing geochemical patterns related to mineralization using a self-organizing map. Applied Geochemistry, 151,105621.
[10] Zuo, R., J. Wang, Y. Xiong, and Z. Wang. (2021). The processing methods of geochemical exploration data: Past, present, and future. Applied Geochemistry, 132,105072.
[11] Wang, J., Y. Zhou, and F. Xiao. (2020). Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Applied Geochemistry, 120,104679.
[12] Chen, Y., L. Lu, and X. Li. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140,56-63.
[13] Zuo, R. and J. Wang. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164,33-41.
[14] Grunsky, E. and P.d. Caritat. (2020). State-of-the-art analysis of geochemical data for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20(2),217-232.
[15] Hawkes, H. and J. Webb. (1963). Geochemistry in mineral exploration. Soil Science, 95(4),283.
[16] Reimann, C., H. Kürzl, and F. Wurzer, Applications of exploratory data analysis to regional geochemical mapping, in Geochemistry and Health (1988). 2017, CRC Press. p. 21-28.
[17] Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1-2),13-22.
[18] Saremi, M., M. Yousefi, and S. Yousefi. (2023). Separation of geochemical anomalies related to hydrothermal copper mineralization using staged factor analysis in Feyzabad geological map. Journal of Analytical and Numerical Methods in Mining Engineering.
[19] Hoseinzade, Z. and A.R. Mokhtari. (2017). A comparison study on detection of key geochemical variables and factors through three different types of factor analysis. Journal of African Earth Sciences, 134,557-563.
[20] Liu, Q., G. Wu, Z. Liu, X. Mao, J. Yang, and M. Deng. (2024). Local phase-constrained convolutional autoencoder network for identifying multivariate geochemical anomalies. Computers & Geosciences,105679.
[21] Esmaeiloghli, S., S.H. Tabatabaei, E.J.M. Carranza, S. Hosseini, and Y. Deville. (2021). Spatially-weighted factor analysis for extraction of source-oriented mineralization feature in 3D coordinates of surface geochemical signal. Natural Resources Research, 30(6),3925-3953.
[22] Cheng, Q., F. Agterberg, and S. Ballantyne. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical exploration, 51(2),109-130.
[23] Afzal, P., M. Mirzaei, M. Yousefi, A. Adib, M. Khalajmasoumi, A.Z. Zarifi, P. Foster, and A.B. Yasrebi. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119,139-149.
[24] Meigoony, M.S., P. Afzal, M. Gholinejad, A.B. Yasrebi, and B. Sadeghi. (2014). Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1: 100,000 sheet, Central Iran. Arabian Journal of Geosciences, 7,5333-5343.
[25] Ahmadi, F., H. Aghajani, and M. Abedi. (2021). Geochemical potential mapping of iron-oxide targets by Prediction-Area plot and Concentration-Number fractal model in Esfordi, Iran. International Journal of Mining and Geo-Engineering, 55(2),171-181.
[26] Shamseddin Meigooni, M., M. Lotfi, P. Afzal, N. Nezafati, and M.K. Razi. (2021). Application of multivariate geostatistical simulation and fractal analysis for detection of rare-earth element geochemical anomalies in the Esfordi phosphate mine, Central Iran. Geochemistry: Exploration, Environment, Analysis, 21(2),geochem2020-035.
[27] Zuo, R., Y. Xiong, J. Wang, and E.J.M. Carranza. (2019). Deep learning and its application in geochemical mapping. Earth-science reviews, 192,1-14.
[28] Hajihosseinlou, M., A. Maghsoudi, and R. Ghezelbash. (2024). A comprehensive evaluation of OPTICS, GMM and K-means clustering methodologies for geochemical anomaly detection connected with sample catchment basins. Geochemistry,126094.
[29] He, M.-Y., J.-B. Dong, Z. Jin, C.-Y. Liu, J. Xiao, F. Zhang, H. Sun, Z.-Q. Zhao, L.-F. Gou, and W.-G. Liu. (2021). Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochimica et Cosmochimica Acta, 299,151-162.
[30] Afzal, P., S. Farhadi, M. Boveiri Konari, M. Shamseddin Meigooni, and L. Daneshvar Saein. (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. Geopersia, 12(1),191-199.
[31] Xiong, Y. and R. Zuo. (2020). Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Computers & geosciences, 140,104484.
[32] Esmaeiloghli, S., S.H. Tabatabaei, and E.J.M. Carranza. (2023). Infomax-based deep autoencoder network for recognition of multi-element geochemical anomalies linked to mineralization. Computers & Geosciences, 175,105341.
[33] Farhadi, S., S. Tatullo, M.B. Konari, and P. Afzal. (2024). Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping. Journal of Geochemical Exploration, 260,107441.
[34] Li, S., J. Chen, and J. Xiang. (2020). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural computing and applications, 32,2037-2053.
[35] Mirzabozorg, S.A.A.S., M. Abedi, and M. Yousefi. (2024). Enhancing training performance of convolutional neural network algorithm through an autoencoder-based unsupervised labeling framework for mineral exploration targeting. Geochemistry,126197.
[36] Zhao, J., S. Chen, and R. Zuo. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164,54-64.
[37] Guan, Q., S. Ren, L. Chen, B. Feng, and Y. Yao. (2021). A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition. Computers & Geosciences, 156,104890.
[38] Mirzabozorg, S.A.A.S. and M. Abedi. (2023). Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting. Applied Geochemistry,105807.
[39] Chen, Y. and W. Wu. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17(3),231-238.
[40] Chen, Y., S. Wang, Q. Zhao, and G. Sun. (2021). Detection of multivariate geochemical anomalies using the bat-optimized isolation forest and bat-optimized elliptic envelope models. Journal of Earth Science, 32(2),415-426.
[41] Shahrestani, S. and E.J.M. Carranza. (2024). Effectiveness of LOF, iForest, and OCSVM in detecting anomalies in stream sediment geochemical data. Geochemistry: Exploration, Environment, Analysis,geochem2024-009.
[42] Bigdeli, A., A. Maghsoudi, and R. Ghezelbash. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233,106923.
[43] Rezapour, M.J., M. Abedi, A. Bahroudi, and H. Rahimi. (2020). A clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting. Geopersia, 10(1),149-163.
[44] Agha Seyyed Mirzabozorg, S., M. Abedi, and F. Ahmadi. (2023). Clustering of Areas Prone to Iron Mineralization in Esfordi Range based on a Hybrid Method of Knowledge-and Data-Driven Approaches. Journal of Mineral Resources Engineering, 8(4),1-26.
[45] Aryafar, A., H. Moeini, and V. Khosravi. (2020). CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran. International Journal of Mining and Geo-Engineering, 54(1),33-38.
[46] Aryafar, A. and H. Moeini. (2017). Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran. Journal of Mining and Environment, 8(4),673-682.
[47] Xiong, Y. and R. Zuo. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86,75-82.
[48] Xiong, Y. and R. Zuo. (2021). Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder. Mathematical Geosciences,1-22.
[49] Saremi, M., Z. Hoseinzade, S.A.A.S. Mirzabozorg, A.B. Pour, B. Zoheir, and A. Almasi. (2024). Integrated remote sensing and geochemical studies for enhanced prospectivity mapping of porphyry copper deposits: a case study from the Pariz district, Urmia-Dokhtar metallogenic belt, southern Iran. Remote Sensing Applications: Society and Environment,101343.
[50] Xiong, Y., R. Zuo, and E.J.M. Carranza. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102,811-817.
[51] Yu, X., P. Yu, K. Wang, W. Cao, and Y. Zhou. (2024). Data-Driven Mineral Prospectivity Mapping Based on Known Deposits Using Association Rules. Natural Resources Research,1-24.
[52] Chen, L., Q. Guan, B. Feng, H. Yue, J. Wang, and F. Zhang. (2019). A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition. Minerals, 9(5),270.
[53] Maghsoudi, A., M. Rahmani, and B. Rashidi, Gold deposits and indications of Iran. 2005.
[54] Behroozi, A. (1987). Geological map of Iran 1: 100,000 series, Feizabad. Geological Survey of Iran, Tehran.
[55] Karimpour, M.H., A.M. Shafaroudi, A.M. Bajestani, R.K. Schader, C.R. Stern, L. Farmer, and M. Sadeghi. (2017). Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit. Journal of Geochemical Exploration, 183,58-78.
[56] Taghadosi, H. and A. Malekzadeh Shafaroudi. (2018). Evidences of probable porphyry Cu-Au mineralization in Namegh area, Northeast of Kashmar: geology, Alteration, mineralization, geochemistry, and fluids inclusion studies. Scientific Quarterly Journal of Geosciences, 27(108),105-114.
[57] Yousefi, M. and V. Nykänen. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164,94-106.
[58] Zhang, Y. A better autoencoder for image: Convolutional autoencoder. in ICONIP17-DCEC. 2018.
[59] Zhao, B., D. Zhang, P. Tang, X. Luo, H. Wan, and L. An. (2023). Recognition of multivariate geochemical anomalies using a geologically-constrained variational autoencoder network with spectrum separable module–A case study in Shangluo District, China. Applied Geochemistry, 156,105765.
[60] Zeiler, M.D. and R. Fergus. Visualizing and understanding convolutional networks. in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. 2014. Springer.
[61] Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83,200-214.
[62] Yousefi, M., A. Kamkar-Rouhani, and M. Alipoor. (2014). Increasing the Exploration Success and Intensify of Stream Sediment Geochemical Halos Using Recognizing and Omitting the Non-Predictive Factors, Case Studies: Fluorite and Copper Mineralization. Scientific Quarterly Journal of Geosciences, 24(93),85-92.
[63] Parsa, M., A. Maghsoudi, M. Yousefi, and M. Sadeghi. (2016). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165,111-124.
[64] Shahrestani, S., D.R. Cohen, and A.R. Mokhtari. (2024). A comparison of PCA and ICA in geochemical pattern recognition of soil data: The case of Cyprus. Journal of Geochemical Exploration, 264,107539.
[65] Hajihosseinlou, M., A. Maghsoudi, and R. Ghezelbash. (2024). Regularization in machine learning models for MVT Pb-Zn prospectivity mapping: applying lasso and elastic-net algorithms. Earth Science Informatics,1-15.
[66] Pirdadeh Beyranvand, D., M.A. Arian, T. Farhadinejad, and A. Ashja Ardalan. (2021). Identification of Geochemical Distribution of REEs Using Factor Analysis and Concentration-Number (CN) Fractal Modeling in Granitoids, South of Varcheh 1: 100000 Sheet, Central Iran. Iranian Journal of Earth Sciences, 13(4),288-289.
[67] Saadati, H., P. Afzal, H. Torshizian, and A. Solgi. (2020). Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry: Exploration, Environment, Analysis, 20(4),461-472.
[68] Saremi, M., A. Maghsoudi, Z. Hoseinzade, and A.R. Mokhtari. (2024). Data-driven AHP: a novel method for porphyry copper prospectivity mapping in the Varzaghan District, NW Iran. Earth Science Informatics,1-16.
[69] Koohzadi, F., P. Afzal, D. Jahani, and M. Pourkermani. (2021). Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (SA) fractal model in north central Iran. Iranian Journal of Earth Sciences, 13(4),299-307.
[70] Saremi, M., A. Maghsoudi, R. Ghezelbash, M. Yousefi, and A. Hezarkhani. (2024). Targeting of porphyry copper mineralization using a continuous-based logistic function approach in the Varzaghan district, north of Urumieh-Dokhtar magmatic arc. Journal of Mining and Environment.
[71] Zuo, R. and Y. Xiong. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural Resources Research, 27,5-13.
[72] Zhang, C., R. Zuo, and Y. Xiong. (2021). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method. Applied Geochemistry, 130,104994.
[73] Zhang, S., E.J.M. Carranza, H. Wei, K. Xiao, F. Yang, J. Xiang, S. Zhang, and Y. Xu. (2021). Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Natural Resources Research, 30,1011-1031.
[74] Yousefi, M. and E.J.M. Carranza. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79,69-81.
[75] Roshanravan, B., H. Aghajani, M. Yousefi, and O. Kreuzer. (2019). An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28,1089-1105.
[76] Hoseinzade, Z., A. Zavarei, and K. Shirani. (2021). Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation. Natural Hazards, 109,2489-2507.
[77] Afzal, P., A. Khakzad, P. Moarefvand, N.R. Omran, B. Esfandiari, and Y.F. Alghalandis. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2),34-46.
[78] Afzal, P., M. Abdideh, and L. Daneshvar Saein. (2023). Separation of productivity index zones using fractal models to identify promising areas of fractured reservoir rocks. Journal of Petroleum Exploration and Production Technology, 13(9),1901-1910.
[79] Li, H., X. Li, F. Yuan, S.M. Jowitt, M. Zhang, J. Zhou, T. Zhou, X. Li, C. Ge, and B. Wu. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China. Applied Geochemistry, 122,104747.