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A B S T R A C T 

 

Recent advancements in autoencoders and their variants have notably enhanced the detection of multi-element geochemical signatures linked 
to ore occurences. This research employed a convolutional autoencoder algorithm (CAE) to identify geochemical anomalies, leveraging the 
algorithm’s ability into account the spatial correlation within the geochemical dataset. In this framework, two stream sediment datasets were 
generated in the Feizabad district using a conceptual modelling approach alongside a big data analysis strategy. These datasets were 
individually fed into the CAE model to identify multi-element geochemical anomalies based on the reconstruction error in an unsupervised 
manner. A comparative analysis of two geochemical prospectivity models and the simplified geological map of Feizabad demonstrates a strong 
spatial correlation between the identified anomaly regions and known mineral occurrences, which are distributed across andesite, tuff, and 
Eocene-Oligocene intrusive rocks. However, a quantitative assessment using prediction-area plots indicates that the multi-element 
geochemical map derived from the conceptual model exhibits a higher prediction rate (72%) compared to the geochemical prospectivity map 
generated through the big data approach (63%). 
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1. Introduction 

Recognizing geochemical anomalies through stream sediment 
samples is a fundamental task in regional-scale geochemical exploration 
[1-4], as it helps exploration geologists accurately delineate exploration 
targets and improve their understanding of the mineralization sought. 
Stream sediment samples are among the best exploration data and 
provide important information about the migration of elements from 
alteration and mineralization zones [1]. These samples are the product 
of erosion and weathering of the upper rocks in the catchment basin [5]. 
The main goal of stream sediment geochemistry is to separate high-
potential zones from unfavorable regions, resulting in a smaller search 
space for subsequent mineral exploration programs and cost reduction 
[6, 7]. The spatial distribution of ore elements in these sediments is 
significantly influenced by various complex events, including fluid 
movements, structural factors and hydrothermal processes [8]. As a 
result, stream sediment geochemical data exhibit complex nonlinear 
systems. This complexity and nonlinear relationship may indicate 
hidden patterns and anomalies associated with ore mineralization. 

Over the past decades, various methods have been developed to 
detect geochemical anomalies and identify patterns associated with 
mineralization in geochemical datasets [9, 10]. In general, these 
methods can be divided into main groups, such as frequency-based and 
frequency-spatial−based statistical approaches [11-14]. Some classical 
statistical methods include mean ± k standard deviation [15], 
exploratory data analysis [16], and multivariate analysis (e.g., PCA-FA) 
[6, 17-19]. These methods are based on the frequency distribution and  

 
 
 
ignore the spatial structures/correlation of the stream sediment 
geochemical data [20]. To address this issue, advanced spatial statistical 
methods, such as spatially weighted factor analysis [21], the 
fractal/multifractal approach [22-25], and multivariate geostatistics 
tools [26] have been successfully proposed in the context of 
geochemical data analysis. However, these techniques depend on several 
specific assumptions, such as normal distribution and linear relationship 
[27]. In addition, due to the complexity of geological phenomena and 
the multi-step nature of mineral systems, geochemical data exhibit high 
dimensionality, spatial correlation, and nonlinear complexity [6, 11, 27, 
28]. For these reasons, the statistical distribution of these data is 
sophisticated [29]. Hence, the mentioned techniques utilized in the 
analysis of stream sediment geochemical data have limitations and 
cannot completely model nonlinear relationships between the elements 
associated with mineral deposits. 

Recently, various machine learning (ML) and deep learning (DL) 
algorithms have been successfully applied for geochemical anomaly 
detection and lithological classification [11, 30-33]. These algorithms 
can be divided into two main categories, namely supervised and 
unsupervised methods. Supervised algorithms (e.g., CNN [34, 35] and 
ANN [36]) could integrate multivariate geochemical data to extract 
complex and hidden mineralization-related information without any 
assumptions about data distribution [37]. However, the main challenge 
in the implementation and training of supervised algorithms is that a 
large number of labeled samples are required [37]. Additionally, the lack  
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of access to negative ground truth samples in the regional studies leads 
to a further limitation in utilizing these algorithms [38]. In contrast to 
supervised algorithms, unsupervised algorithms do not encounter the 
aforementioned challenges, as they do not rely on labeled data for 
training [38]. Several studies have adopted unsupervised learning 
algorithms, such as one-class support vector machine [39], isolation 
forest [40, 41], clustering [42-44], CRBM [45, 46], deep AutoEncoder 
(AE), and its varients [38, 47-49] for  geochemical anomaly recognition 
and mineral prospectivity mapping (MPM). In recent years, the deep 
AE and its variants have attracted more interest than other algorithms 
in the context of geochemical anomaly detection. They are characterized 
by their significant ability to learn intricate nonlinear patterns and 
detect nonlinear anomalies in input data [27].  

In the training phase, the AE is fed with all geochemical datasets, 
consisting mainly of non-anomalous samples. Through training, the 
model only learns to reconstruct the background samples well, and 
anomalous samples contribute limitedly to the learning process due to 
their non-representative features, resulting in weaker reconstruction 
and higher reconstruction error compared to normal samples [38, 50]. 
Xiong and Zuo (2016) explored the application of deep AE in 
recognizing multivariate geochemical anomalies associated with iron 
mineralization [47]. They normalized the concentration values for five 
elements related to skarn-type Fe mineralization, namely Cu, Pb, Mn, 
Zn, and Fe2O3, and used them to train the deep AE. Their results 
demonstrate the usefulness of the deep AE network in recognizing 
multivariate geochemical anomalies for mineral exploration. However, 
the basic AE is classified as a spectral-based method, where each sample 
(cell) is fed into the model as a feature vector [51]. Hence, the model 
ignores the spatial correlation among neighboring samples and focuses 
only on mineralization-related features within each sample. To address 
this challenge, some studies proposed the Convolutional AutoEncoder 
(CAE), which improves the basic architecture of simple AEs by 
replacing fully connected layers with convolutional and pooling layers 
[37, 48, 52]. A CAE effectively reconstructed geochemical samples by 
considering their spatial patterns and local spatial structures, thereby 
facilitating the recognition of multivariate geochemical anomalies 
caused by reconstruction errors [48]. Various studies confirm the strong 
performance of CAE in recognizing multivariate geochemical anomalies 
related to mineralization [37, 48, 52]. Xiong and Zuo (2021) successfully 
employed a convolutional denoising autoencoder (CDAE) to detect 
multivariate geochemical anomalies associated with mineralization 
from geochemical data covering 39 major and trace geochemical 
elements [48]. 

The aim of this paper is to recognize the multi-element geochemical 
footprints/signatures associated with hydrothermal copper 
mineralization in the Feizabad region by applying the CAE algorithm. 
To successfully execute a robust CAE algorithm, it is important to 
develop a suitable strategy that is customized according to the input 
feature vector.  Therefore, two stream sediment geochemical datasets 
were generated based on the conceptual model (partial data) and big 
data analytic approach (full data). In the next step, the data-driven 
prediction-area plot was utilized for the quantitative assessment of the 
geochemical prospectivity models. Finally, an effective geochemical 
prospectivity model associated with hydrothermal copper 
mineralization was identified. Finally, an effective geochemical 
prospectivity model associated with hydrothermal copper 
mineralization was identified, introducing favorable areas for 
subsequent mineral exploration programs. 

2. Geological setting of the Feizabad district 

The Feizabad district lies within the Moaleman-Torbat-e-Heydaryeh 
metallogenic belt in Khorasan Razavi Province, northeastern Iran [53]. 
This geological region is a significant area for the exploration of various 
mineral deposits. The mentioned metallogenic belt is bounded in the 
southwest by the Dorouneh fault. The Dorouneh strike-slip fault is the 
main fault in the Feizabad district which divides the area into two 
northern and southern sections [54]. The northern section of the 

1:100,000 geological sheet of Feizabad consists of sedimentary units, 
different types of tuffs, Tertiary volcanic and pyroclastic rocks, and 
Eocene-Oligocene intrusive rocks [54]. From a geological point of view, 
this part is therefore more important than the southern section. The 
tectonic features and geological setting of the northern section make it 
a prospective area for the exploration of various types of mineralization, 
such as hydrothermal copper. There are 13 hydrothermal Cu deposits 
and occurrences in the Feizabad area, most of which are located near 
volcanic and Eocene-Oligocene intrusive rocks. These deposits include 
IOCG, epithermal base and precious metals, Cu-Au porphyry, and vein-
type Cu [2]. Figure 1 shows a simplified geological map of Feizabad with 
a 1:100,000 scale. In this region, copper, iron, and gold mineralization 
have been observed in proximity to intrusive rocks. Additionally, 
alteration zones have resulted from the intrusion of granodiorite and 
granite units. Faults and fractures have controlled the fluid flows, and 
have played a major role in their formation. From an exploration 
geochemistry perspective, previous studies have shown that the 
association of elements, such as Zn, Pb, As, Sb, Mo, and Sn may be 
related to vein-type mineralization of these elements within the volcanic 
units of the area. Moreover, the association of Cu, Hg, and Au elements 
may explain the presence of porphyry deposits and possibly IOCG in 
the intrusive rocks and adjacent volcanic units [2]. 

 

 
Figure. 1. The location of the Feizabad district on the map of structural zones of 
Iran (a) and the simplified geological map of the Feizabad district (b). 

 

The Kuh-e-Zar deposit is a type of IOCG mineralization in the 
Feizabad district, in which the quartz–specular hematite-gold vein is 
considered the first and most important mineralized vein [55]. The 
Namegh Cu-Au prospect is located in the northern region of the 
Feizabad district [56]. Based on the Feizabad geological map, the 
lithology of the Namegh area includes white brecciated tuff, ignimbrite, 
lapilli tuff, and green sandy tuff, all of Eocene age. Previous research has 
demonstrated that, alongside these rocks, there are numerous intrusive 
rocks, such as diorite, monzodiorite, and monzonite, which manifest as 
stocks and dikes [56]. This has resulted in significant mineralization and 
extensive hydrothermal alteration in the region. Mineralization is 
observed in monzodioritic intrusions and volcanic rocks, and significant 

(a) 

(b) 
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Cu and Au anomalies are identified primarily within these geologic 
units. It can be concluded that monzodioritic dikes and stocks are the 
main sources of mineralization in the Namegh region [56]. The 
Tanorcheh is another deposit in the Feizabad region that has been 
recognized as a valuable anomaly zone through stream sediment 
geochemical studies. Generally, the geological characteristics, alteration 
features, and geochemical analyzes indicate that the Feizabad region has 
significant potential for the presence of hydrothermal copper deposits, 
such as porphyry deposits. Cu, Fe, and Au mineralization has been 
commonly observed in proximity to the intrusive rocks and faults in this 
region. 

3. Geospatial data set 

The Geological Survey and Mineral Exploration of Iran (GSI) 
conducted a systematic collection of 1,033 stream sediment samples 
from the Feizabad region at a scale of 1:100,000.  After initial preparation 
and coding, these samples were analyzed for 28 elements and Au, 
respectively, using ICP-OES and Fire-Assay methods. According to the 
quality of the geochemical data, a dataset consisting of 26 major and 
trace geochemical elements related to the 587 stream sediment samples 
collected in the north of the Feizabad district was used. Basic statistical 
descriptions (such as mean, standard deviation, minimum, maximum, 
skewness, and kurtosis) for 26 element concentrations are calculated 
and presented in Table 1. Additionally, the study incorporated a 
geological map at a 1:100,000 scale for quality assessment and the 
locations of 13 known hydrothermal copper deposits to quantitatively 
evaluate the geochemical models developed through CAE. 

 

Table 1. The basic statistical descriptions related to 587 stream sediment samples 
in the Feizabad district. 

Elements Minimum Maximum Mean Std. deviation Skew Kurt 

Zn 40.2 312.0 89.82 38.65 1.59 3.25 

Pb 3.6 256.6 30.06 23.59 3.32 19.61 

Ag 0.0 0.7 0.08 0.04 8.01 102.39 

Cr 71.2 5448.2 477.39 608.06 2.80 11.25 

Ni 26.3 829.6 110.60 101.60 2.74 9.96 

Bi 0.1 5.0 0.33 0.39 5.86 49.83 

Cu 21.3 153.9 39.48 15.57 2.77 11.46 

As_ 2.5 52.6 9.79 4.48 3.61 23.27 

Sb 0.1 4.2 0.73 0.44 2.08 9.24 

Co 11.6 59.0 19.89 6.04 1.96 5.78 

Sn 1.0 4.2 1.83 0.46 1.02 3.81 

Ba 89.4 1237.0 385.71 135.82 1.09 3.59 

V 82.4 1078.0 137.22 76.73 6.76 61.96 

Sr 89.2 529.8 244.62 61.09 1.00 2.21 

Hg 0.0 0.1 0.01 0.01 2.04 9.81 

W 0.2 8.8 1.25 0.68 2.89 25.44 

B 11.0 135.7 42.45 18.89 1.78 4.75 

Be 0.8 3.9 1.78 0.30 0.75 7.00 

Mo 0.2 3.8 1.03 0.58 1.12 2.18 

Li 11.9 71.8 29.63 6.32 1.15 4.75 

Au 0.3 32.0 1.85 2.61 6.13 49.56 

Rb 8.0 154.3 67.65 22.81 -0.08 -0.01 

Cs 2.8 17.5 6.55 2.23 1.69 4.41 

Nb 3.2 19.0 12.10 2.91 -0.24 -0.72 

Th 2.1 13.7 8.73 2.53 -0.77 -0.15 

U 0.6 3.0 1.76 0.41 -0.19 0.21 

 

3.1. Geochemical data analysis 

Before using DL algorithms to identify geochemical anomalies, 
several preprocessing steps were employed. Implementing these steps 
leads to the creation of high-quality geochemical datasets and improves 

the performance of DL algorithms. Hence, three basic steps, including 
statistical preprocessing, data interpolation, and logistic function 
adoption were followed. In the first step, some statistical data 
preprocessing was applied, such as the replacement of censored values. 
The next step involved adopting the IDW technique to interpolate 
stream sediment geochemical data. Finally, the logistic function 
proposed by Yousefi et al. (2016) [57] was utilized to transform the data 
values into the fuzzy space, which is expressed as the following function: 

 

𝐹𝐸 =
1

1+𝑒−𝑠(𝐸−𝑖)
                                                                                            (1) 

 

where FE is the value of the fuzzy membership and the assigned fuzzy 
score, s is the slope of the logistic function, i is the inflection point of 
the logistic function, and E is a weighted fuzzy evidential layer that is 
transformed into an interval of [0,1]. Also, the values of i and s were 
obtained from Eqs. 2 and 3: 

 

𝑖 =
𝐸𝑚𝑎𝑥+𝐸𝑚𝑖𝑛

2
                                                                                            (2) 

 

𝑠 =
9.2

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
                                                                                        (3) 

 

4. Methodology 

4.1. Convolutional autoencoder 

Convolutional autoencoder (CAE) is an extension of a simple AE that 
uses convolutional layers instead of the fully connected layers, 
improving its ability to capture spatial features and patterns in data [58]. 
The schematic architecture of the CAE is illustrated in Fig. 2. Like the 
classic AEs, CAE consists of two main parts, namely the encoder and the 
decoder. 

 

 
 

Figure 2. The schematic architecture of the simple CAE. 

 
The encoder part employes convolution layers to extract improtant 

features and compress the input data into a lower-dimensional 
representation (i.e., latent space). The decoder phase then uses this 
compressed representation and transposed convolution layers to 
reconstruct the original input [59]. In addition, max-pooling and up-
sampling layers are usually used in the encoder and decoder phases, 
respectively. Max-pooling layers downsample and shrink the feature 
maps created by convolution layers, while up-sampling layers increase 
the size of feature maps by reversing the function of max-pooling (Fig. 
3). 

A convolution layer is a key component of CAEs, consisting of 
multiple kernels (filters) that allow the network to learn and recognize 
spatial patterns. These kernels convolved the input data to capture 
important features and create feature maps (Fig. 3a). A pooling layer is 
typically deployed after a convolutional layer to downsample the feature 
maps by retaining only the most significant information (Fig. 3c). 
Similar to the convolution layer, the transposed convolution layer 
consists of a series of kernels. It increases the spatial dimensions of the 
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feature maps by reversing the convolution operation (Fig. 3b). The up-
sampling layer increases the dimensions of feature maps (Fig. 3d). In the 
encoder phase, the locations of the maxima within each pooling region 
were recorded and then exploited using the up-sampling layer to place 
the values at appropriate locations [60]. This function is demonstrated 
as a switch variable in Fig. 3c, d. 

Through the learning process, by minimizing the reconstruction 
error, CAE effectively learns to capture the common underlying features 
of the data and then reconstructs the image. This algorithm can be used 
for both feature extraction and unsupervised anomlay detection tasks. 
The former exploits the compressed representations of input data 
(latent space), while the latter uses the reconstruction error of samples. 
For unsupervised anomaly detection task, the CAE was trained on a 
dataset containing both normal (background) and anomalous samples. 
It should be noted that the dataset must mostly contain normal samples. 
During the training phase, the model was trained to minimize the 
overall reconstruction error. The CAE can then learn only the most 
representative and frequent patterns. As a result, anomalies contribute 
less to the learning process, leading to weak reconstruction compared 
to normally represented samples. Accordingly, the reconstruction error 
could be used as a measure for identifying anomalous samples with 
higher reconstructed error [38]. In multivariate geochemical data, this 
technique can be effectively used to detect anomalies, which often 
occupy much less area than normal samples (1.5%–5% of the total area), 
while the majority of the data represents the background of the study 
area [37]. 

 

 
 

Figure 3. Demonstration of how (a) convolution, (b) deconvolution, (c) pooling 
and (d) up-sampling (unpooling) layer operations in the CAE [48]. 

 

4.2. CAE architecture and training phase 

The architecture of the CAE used in this research includes an encoder 
and a decoder network (Table 2). The encoder phase begins with an 
input layer of size 8×8×26 for the big dataset (full data) and 8×8×9 for 
the conceptual-based dataset (partial data). The input is passed through 
a Conv2D layer with 128 filters using 3×3 kernels at stride 1, with a total 
of 30080 parameters. The extracted feature maps are then passed 
through a 2×2 max-pooling layer with stride 1, reducing the spatial 
dimensions to 4×4×128. The subsequent Conv2D layer with 256 filters 
and 3×3 kernels at stride 1, further processes the output of the last layer, 
producing an output of 4×4×256 with 295168 parameters. In the decoder 
phase, the first layer is a Conv2DTranspose layer with 256 filters and a 
3×3 kernel size at stride 1, resulting in an output of 4×4×256 and 590080 
parameters. This is followed by an up-sampling layer that scales the 
output back to 8×8×256. Finally, a Conv2DTranspose layer with 128 
filters reduces the output to 8×8×128, adding 295040 parameters to the 
network, before the output layer reconstructs the final image to its 
original size of 8x8x26 for the big dataset and 8×8×9 for the conceptual-

based dataset with an additional 29978 parameters. Training was 
conducted with an Adam optimizer, using a learning rate of 0.001, a 
batch size of 64, and 500 epochs. The model's performance was 
optimized by minimizing the mean squared error (MSE) loss function. 
A LeakyReLU activation function and a sigmoid activation were used 
for all convolutional and output layers, respectively. 

To analyze the study area, a standard grid cell measuring 800×800 
meters was placed over it, dividing it into patch samples of the same size. 
A total of 1760 cells were created and utilized for training the CAE 
model. The reconstruction error of each cell was calculated after the 
training process and used as the anomaly score.   Figure 4 illustrates the 
methodology employed in this study to create geochemical maps 
associated with mineralization. 

 
Table 2. Architecture of adopted CAE in this study for geochemical anomaly 
detection. 

Sub-network Layer Output size Param 

Encoder 

Input 8×8×26 and 8×8×9 0 

Conv2D 8×8×128 30080 

Max-pooling 4×4×128 0 

Conv2D 4×4×256 295168 

Decoder 

Conv2DTranspose 4×4×256 590080 

Up-sampling 8×8×256 0 

Conv2DTranspose 8×8×128 295040 

Output 8×8×26 and8×8×9 29978 

5. Geochemical dataset layout 

5.1. Partial dataset 

There exists a significant correlation among geochemical elements 
across various types of ore mineralization [18, 61]. Recognizing these 
meaningful relationships can provide exploration geologists with 
critical insights into the mineral deposits presented in anarea.  
Furthermore, leveraging these insights enhances the likelihood of 
successfully identifying exploration targets. Therefore, the identification 
of multi-element geochemical signatures and the precise delineation of 
anomaly zones are essential components of regional-scale geochemical 
exploration [62, 63]. In this regard, various frameworks can be 
employed, including the application of a conceptual model of mineral 
deposit type being sought. This framework aligns with traditional 
methods, such as principal component analysis (PCA) [64, 65], factor 
analysis (FA) [66], and staged factor analysis (SFA) [6, 18, 67, 68] to 
detect  geochemical footprints associated with multiple elements. 
Statistical techniques are instrumental in revealing important 
relationships among multiple elements that are positively correlated 
with the main mineralization, ultimately aiming to identify geochemical 
anomalies connected to the mineral deposit model sought. 

Improved multivariate statistical methods, such as the SFA [6], can 
be applied to discern paragenesis and key elements associated with 
mineral deposits [69]. SFA, an extended version of factor analysis, 
effectively differentiates between non-indicative (noisy) elements and 
significant ones pertinent to mineralization by considering the 
conceptual model of the deposit type being sought and employing two 
essential phases [18, 70]. In this research, the concentrations of 10 
geochemical elements were analyzed using SFA within the framework 
of hydrothermal copper deposits. The results of the implementation of 
this method are tabulated in Table 3. According to a threshold of 0.5, Ag 
was excluded from the analysis, resulting in the identification of two 
significant factors associated with mineralization. All the elements in 
two factors demonstrate strong participation and have the condition of 
a clean factor, making them ideal for investigating hydrothermal copper 
mineralization. The results of the SFA imply that the association of 
elements in factor 1 (Zn, Pb, As, Sb, Mo, and Sn) and factor 2 (Cu, Hg, 
and Au) may be linked to vein-type mineralization and porphyry 
deposits (and possibly IOCG), respectively. Consequently, the 
outcomes of the SFA can guide the selection of critical elements, such 
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as Cu, Au, Hg, Mo, Pb, Zn, Sn, As, and Sb. By reducing the influence of 
non-indicator elements and geochemical noise, the geochemical layers 
linked to these selected elements can serve as an improved input 
geochemical matrix for the CAE algorithm. 

 

 
Figure 4. Workflow of this study to generate geochemical maps related to 
mineralization. 

 

Table 3. The implementation of the SFA to select paragenesis elements. 

SFA 

Second Step First step 

F2 F1 Element F2 F1 Element 

0.270 0.767 Pb 0.308 0.756 Pb 

0.306 0.760 Zn 0.439 0.305 Ag 

0.772 0.162 Cu 0.323 0.749 Zn 

-0.027 0.774 As 0.744 0.141 Cu 

0.160 0.883 Sb -0.014 0.775 As 

0.627 0.053 Hg 0.184 0.878 Sb 

0.735 0.195 Au 0.621 0.033 Hg 

0.197 0.779 Mo 0.196 0.774 Mo 

0.090 0.691 Sn 0.731 0.172 Au 

19.654 41.051 Var. 0.112 0.689 Sn 

60.709 41.051 Cum.var 19.498 37.201 Var. 

0.796 KMO 56.699 37.201 Cum.var 

 

5.2. Full dataset 

Several complex geological processes and mechanisms, including 
structural factors, hydrothermal processes, and fluid movements, 
occurring over various spatial and temporal scales, influence the 
formation of mineralization. This leads to complex and nonlinear 
geochemical patterns in stream sediment data. Therefore, it is important 
to provide effective concepts and approaches for analyzing stream 
sediment geochemical data and guiding the geochemical exploration at 
the regional scale. In this regard, the big data analysis [31, 50, 71] is a key 
appropriate concept for detecting hidden and nonlinear patterns, and 
enhancing the accuracy of geochemical exploration. The analysis of 
large datasets presents substantial opportunities and potential in the 
domain of processing stream sediment geochemical data to improve the 
precision and effectiveness of regional-scale geochemical exploration 
[31, 71]. In contrast to traditional frameworks, the big data analysis 
approach focuses on the use of all geochemical elements to 
comprehensively reveal positive and negative geochemical anomalies 
and their relationship with known mineralization [71]. In addition, the 
big data analytics approach helps geoscientists identify hidden and 
nonlinear relationships between some elements that cannot be detected 
using classic methods. In this study, a big dataset was created in addition 
to a conceptual model-driven dataset (partial data), using the principles 
of full dataset in order to detect multi-element geochemical patterns 
associated with mineralization through the application of CAE (Fig. 5). 

 
Figure 5. The distribution map of all geochemical elements in the Feizabad region. 
Note that the geographical coordinates were taken for the Ag map and the other 
layers have the same geographical coordinates. 

6. Geochemical prospectivity models 

This research aimed to generate two seperate sets of stream sediment 
data to detect complex geochemical anomalies. The first dataset focused 
on nine specific elements (Au, Cu, Mo, As, Sb, Zn, Pb, Hg, and Sn), 
chosen according to the sought deposit type.  In contrast, the second 
dataset employed a big data analytical approach, encompassing a total 
of 26 elements.   The CAE algorithm was subsequently utilized on both 
datasets to identify geochemical trends that could signify the presence 
of significant Cu-bearing mineralization. The CAE algorithm, 
recognized for its effectiveness in unsupervised anomaly detection with 
a geospatial emphasis [37, 48, 52, 72, 73], proved capable of identifying 
geochemical anomalies associated with mineralization. Consequently, 
the CAE algorithm facilitated the development of geochemical 
prospectivity models for hydrothermal copper in the northeastern 
region of Iran (see Figs. 6a and 6b). 

The results demonstrate the effectiveness of the CAE algorithm in 
identifying multivariate geochemical anomalies associated with 
hydrothermal mineralization. Furthermore, a comparative analysis of 
the geochemical prospectivity models (Figs. 6a and 6b) and the 
simplified geological map of Feizabad at a 1:100,000 scale (Fig. 1b) 
reveals a strong spatial correlation between the identified anomaly 
regions and known mineral occurrences in both models, which are 
distributed across andesite, tuff, and Eocene-Oligocene intrusive rocks. 
These geological formations exhibit spatial and temporal relationships 
with copper deposits, serving as the predominant hosts for the majority 
of these deposits. Notably, the extent of the anomalous zones identified 
through the geochemical prospectivity model based on the conceptual 
model is smaller than that identified using the big data analytic 
approach. 

To quantitatively assess two models, the locations of 13 known 
mineral deposits/occurrences in the Feizabad district were utilized as 
ground truth samples to draw the data-driven prediction-area “P-A” plot 
[74-76]. The intersection point within this plot serves as a strong 
criterion for evaluating the efficacy of geochemical models in predicting 
known mineral deposits. According to the intersection points illustrated 
in Figs. 7a and 7b, the prediction rates for the multi-element 
geochemical map derived from the conceptual model and the big data 
approach were 72% and 63%, respectively. 
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Figure 6. Two geochemical prospectivity models generated by a) The conceptual 
model and b) The big data approach. 

 

 
 

Figure 7. The prediction-area plot for two geochemical prospectivity models a) 
The conceptual model and b) The big data approach. 

The C-A fractal method is commonly employed for classifying 
prospectivity models or geochemical maps and determining optimal 
thresholds to discretize these models [74, 77, 78]. Thresholds derived 
from the C-A fractal models (Figures 8b and 8d) were applied to classify 
the prospectivity models (Figures 8a and 8c). These thresholds divide 
the prospectivity values into meaningful categories, enabling a better 
interpretation of potential mineral zones. The fractal approach allows 
for a clear distinction between high (red and orange), moderate 
(yellow), and low (green and dark green) potential zones, contributing 
to more accurate exploration targeting. 

 

 
 

Figure 8. The fractal analysis for hydrothermal copper potential mapping: (a) the 
reclassified conceptual map through fractal analysis, (b) the log-log plot of C-A 
fractal model for the conceptual model, (c) the reclassified big data map through 
the fractal analysis, and (d) the log-log plot of the C-A fractal model for the big 
data model. 

7. Discussion 

Convolutional Autoencoder (CAE) is a form of unsupervised neural 
network employed in anomaly detection tasks within nonlinear and 
intricate geochemical datasets, without reliance on ground truth 
samples. This spatial-based algorithm functions independently of 
labeled datasets containing positive (deposit) and negative (non-
deposit) points, thereby surpassing the constraints of supervised 
geochemical anomaly detection methods.  Consequently, it is capable of 
accurately detecting patterns and anomalies associated with 
mineralization. Additionally, the CAE takes into account the spatial 
structure present in geochemical datasets, such as zoning patterns [79], 
leading to improved recognition of multivariate geochemical anomalies 
and intricate patterns. 

There are several concepts and approaches in the context of 
generating geochemical datasets. Among these, the main approaches 
include: (1) utilizing the big data analytics approach [71] and (2) the 
conceptual model of the deposit type sought [37]. The first strategy is a 
novel approach to recognizing geochemical anomalies related to 
mineralization through considering the analysis of full geochemical 
datasets. Considering the positive and negative geochemical anomalies 
may help mitigate uncertainty in geochemical exploration. In this 
regard, Zuo and Xiong (2018) [71] utilized the big data analytics concept 
with a geochemical dataset of 39 variables to generate an anomaly map 
through the deep AE network in the Fujian Province, China. In addition, 
they produced another anomaly map using five selected elements 
related to mineralization. The analysis of the receiver operating 
characteristic (ROC) diagram and the area under curve (AUC) values 
indicated that the model produced from all elements outperforms the 
geochemical model based on only five selected elements. However, this 
approach has several limitations. Unsupervised models may tend to 
extract some anomalies that are not related to mineralization [11]. As a 
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result, this approach may not always be a golden way to detect 
geochemical anomalies with unsupervised methods [11]. Among all 
elements, certain ones are strong footprints of mineralization and can 
guide the exploration, while the remaining ones may reflect other 
geological events [38]. Consequently, adopting the conceptual model 
approach with improved multivariate analysis techniques (e.g., SFA) 
could be more effective for selecting key elements with strong footprints 
of the mineralization sought. 

In this research, two geochemical models were generated using a big 
data analytics strategy and a conceptual model approach. Analysis of the 
obtained results revealed that both models successfully identified 
anomalous zones. The geochemical model derived from all elements 
shows a strong spatial correlation with some known mineral 
deposits/occurrences and can effectively guide exploration geologists in 
greenfield regions with limited exploration data (Fig. 6b). However, the 
prediction rate obtained from the prediction-area plot of the 
geochemical model obtained using nine elements related to 
hydrothermal mineralization was larger than the prediction rate of the 
geochemical model obtained using all elements (Figs. 7a and 7b). This 
demonstrates that the model based on the conceptual framework 
outperforms the other model in the Feizabad region. Consequently, the 
combination of SFA with a conceptual model emerges as an effective 
approach for identifying key factors and producing geochemical maps 
in brownfield areas. Geochemical maps play a crucial role as supportive 
layers in the Mineral Potential Mapping (MPM), improving the 
accuracy of the prospectivity models generated.  Consequently, the 
creation of these maps necessitates the application of robust 
methodologies and principles. It is generally recommended to employ 
both methodologies in different geological setting and then choose the 
model that aligns best with the evaluation criteria. 

8. Conclusion 

This research utilized the CAE as an unsupervised anomaly detection 
algorithm to examine two sets of stream sediment data in order to 
improve the detection of geochemical anomalies and patterns associated 
with hydrothermal mineralization in the Feizabad region. The key 
findings of this investigation are outlined as follows: 
1- Stream sediment samples are crucial for regional-scale geochemical 

exploration, providing key insights and footprints into the migration 
patterns of elements from alteration and mineralized zones. Hence, 
the geochemical indicators related to these samples are important in 
regional-scale mineral exploration targeting. 

2- The conceptual model approach and big data analytic strategy are two 
superior techniques to generate stream sediment geochemical 
datasets. Employing these strategies in conjunction with robust 
mathematical and analytical methods enables the efficient 
identification of multi-element geochemical anomalies associated 
with mineral deposits. 

3- The CAE serves as a robust unsupervised algorithm for spatial-based 
anomaly detection, capable of identifying intricate and nonlinear 
patterns related to mineralization within stream sediment 
geochemical datasets. This method can be applied in greenfield and 
brownfield areas to identify multi-element geochemical signatures. 
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