[1]. Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (2022). Determination of caving hydraulic radius of rock mass in block caving method using numerical modeling and multivariate regression. Journal of Mining and Environment, 13(1), 217-233.
[2]. Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (2022). Cavability assessment of rock mass in block caving mining method based on numerical simulation and response surface methodology. Journal of Mining and Environment, 13(2), 579-606.
[3]. Alipenhani, B., Bakhshandeh Amnieh, H., & Majdi, A. (2023). Application of Finite Element Method for Simulation of Rock Mass Caving Processes in Block Caving Method. International Journal of Engineering, 36(1), 139-151.
[4]. Alipenhani, B., Majdi, A, & Bakhshandeh Amnieh, H. (2023). Investigating mechanical and geometrical effects of joints on minimum caving span in mass caving method. International Journal of Mining and Geo-Engineering, 57(2), 223-229.
[5]. Mawdesley, C. A. (2002) Predicting rock mass cavability in block caving mines. University of Queensland.
[6]. K Suzuki Morales, FT Suorineni (2017) Using numerical modeling to represent parameters affecting cave mining. Underground Mining Technology.Australian Centre for Geomechanics, Perth,ISBN978-0-9924810-7-0.
[7]. Rafiee, R., Ataei, M., KhaloKakaie, R., Jalali, S. E., & Sereshki, F. (2016). A fuzzy rock engineering system to assess rock mass cavability in block caving mines. Neural Computing and Applications, 27, 2083-2094.
[8]. Laubscher, Cave Mining Handbook, (2000), pp. 1–138.
[9]. Mawdesley, C. A. (2002) Predicting rock mass cavability in block caving mines. University of Queensland.
[10]. Alipenhani, B., Bakhshandeh Amnieh, H., & Majdi, A. (2022b). Physical model simulation of block caving in jointed rock mass. International Journal of Mining and Geo-Engineering.
[11]. Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (2024). Determination of the caving zone height using numerical and physical modeling based on the undercutting method, joint dip, and spacing, Journal of Mining and Environment.
[12]. Mohammadi, S., Ataei, M., & Kakaie, R. (2018). Assessment of the importance of parameters affecting roof strata cavability in mechanized longwall mining. Geotechnical and Geological Engineering, 36, 2667-2682.
[13]. Liu, H., Ren, F., He, R., Li, G., & Zhang, J. (2021). Application of fuzzy comprehensive assessment and rock engineering system to assess cavability in block caving mining and establishment of its regionalized model. Environmental Earth Sciences, 80, 1-13.
[15]. Jabinpour, A., Yarahmadi Bafghi, A., Gholamnejad, J. (2018) Geostatistical modeling of rock mass cavability based on laubscher approach in Sechahoon Mine.
[16]. Majdi, A., & Beiki, M. (2010). Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 47(2), 246-253.
[17]. Majdi, A., & Rezaei, M. (2013). Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural Computing and Applications, 23, 381-389.
[18]. Beiki, M., Majdi, A., & Givshad, A. D. (2013). Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 63, 159-169.
[19]. Rezaei, M., Majdi, A., & Monjezi, M. (2014). An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Computing and Applications, 24, 233-241.
[20]. Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications, 30, 1015-1024.
[21]. Mehrdanesh, A., Monjezi, M., Khandelwal, M., & Bayat, P. (2021). Application of various robust techniques to study and evaluate the role of effective parameters on rock fragmentation. Engineering with Computers, 1-11.
[22]. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686-707.
[23]. Li, Y., Hishamuddin, F. N. S., Mohammed, A. S., Armaghani, D. J., Ulrikh, D. V., Dehghanbanadaki, A., & Azizi, A. (2021). The effects of rock index tests on prediction of tensile strength of granitic samples: a neuro-fuzzy intelligent system. Sustainability, 13(19), 10541.
[24]. Vyazmensky, A., Elmo, D., & Stead, D. (2010). Role of rock mass fabric and faulting in the development of block caving induced surface subsidence. Rock mechanics and rock engineering, 43(5), 533-556.
[25]. Sainsbury, B. (2012). A model for cave propagation and subsidence assessment in jointed rock masses. University of South Wales.
[26]. Topal, E. (2008). Evaluation of a mining project using discounted cash flow analysis, decision tree analysis, Monte Carlo simulation and real options using an example. International Journal of Mining and Mineral Engineering, 1(1), 62-76.
[27]. Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
[28]. Wu, C. H., Ho, J. M., & Lee, D. T. (2004). Travel-time prediction with support vector regression. IEEE transactions on intelligent transportation systems, 5(4), 276-281.
[29]. Chen, G., Fu, K., Liang, Z., Sema, T., Li, C., Tontiwachwuthikul, P., & Idem, R. (2014). The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. Fuel, 126, 202-212