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A B S T R A C T 

 

The paper presents the results of a comprehensive investigation of the applicability of various intelligence methods for the optimal prediction 
of rock mass caveability in block caving using effective geomechanical parameters. However, due to the complexity of the prediction of rock 
mass cavability, artificial intelligence-based methods, including the classification and regression tree (CART), support vector machines 
(SVM), and artificial neural network (ANN), have been selected. For validating and comparing the results, common MVR was used. Because 
of the dependency of the modelling generality and accuracy on the number of data, we attempted to obtain an adequate database from the 
results of numerical modelling. The distinct element method (DEM) used to study the rock mass cavability. The results indicated that ANN 
is the most accurate modelling technique with a determination coefficient of 0.987 compared with the other aforesaid methods. Finally, the 
sensitivity analysis showed that joint spacing, friction angle, joint set number, and undercut depth are the most prevailing parameters of rock 
mass cavability. However, the joint dip has shown the minimum effect on rock mass cavability in the block caving mining method. 
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1. Introduction 

Estimating rock mass cavability is an essential variable in block, panel, 
and mass caving methods. However, inadequate estimation of this 
variable can result in the loss of all or part of the ore body. Determining 
the minimum span at which caving initiates and propagates directly 
affects the rock mass cavability. The minimum required caving span is a 
function of controllable parameters (draw rate, undercut geometry, etc.) 
and uncontrollable parameters (geomechanical rock mass properties). 

Various methods were employed to assess the rock mass cavability, 
including numerical methods [1-7] that analyze the ability to initiate 
and propagate caving. Empirical methods [8-11] based on the data from 
block caving mines and open stopes establish a relationship between the 
hydraulic radius of caving and MRMR, Q and DRMR classification 
systems. These methods provided diagrams to determine the hydraulic 
radius and minimum caving span. Probabilistic methods [12-15] 
determine the cavability index based on scoring the impact of various 
parameters. The lack of a statistical relation for choosing the minimum 
required caving span is this issue investigated in this paper. All these 
methods have been used for this purpose. 

Artificial Intelligence (AI) is used in various mining and geological 
engineering projects, which is a helpful method for coping with these 
problems [16-21]. 

Most recent studies have focused on the evaluation of cavability. The 
history of cavability evaluation methods is fully mentioned by 
Alipenhani et al [11]. Rafiee [14] used a rock engineering system (RES), 
which analyses the interrelationships between the effective parameters 
to study the cavability of rock. He also used a fuzzy system to minimize 
the subjectivity of weights calculated in the RES method. Suzuki et al. 
investigated parameters affecting cave mining using numerical  

 
 
 
modelling [6]. Jabinpour et al. investigated rock mass cavability using 
geostatistical modelling based on the laubscher approach in Sechahoon 
Mine [15]. 

Mohamadi et al. [12] have presented a hybrid probabilistically 
qualitative–quantitative model to evaluate the cavability of immediate 
roof and to estimate the main caving span in longwall mining by 
combining the empirical model and the numerical solution. For this 
purpose, numerical simulation was incorporated into the Roof Strata 
Cavability index (RSCi) as a summation of ratings for nine significant 
parameters. A distinct element code was used to simulate numerically 
the main caving span corresponding to various RSCi classes 
probabilistically.  

Alipenhani et al. [4] present the results of a comprehensive 
investigation into the applicability of various intelligence methods for 
the optimal prediction of rock mass caveability in block caving by 
effective geomechanical parameters. 

Numerical modelling employing distinct element software has been 
used to determine the minimum required caving span. Then, 
relationships between the parameters affecting the minimum required 
caving span obtained from the numerical method have been established 
using multivariate regression and robust methods. 

2. Artificial neural network (ANN) 

ANN is a branch of artificial intelligence [22], featuring a multilayer 
topology with interconnected layers. A trial-and-error approach 
determines the number of neurons in the hidden layer. When there is a 
very low correlation, one of the best solutions is ANN compared to 
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conventional alternatives, such as multivariable regression [21]. Among 
the different benefits of ANN modelling, function approximation and 
feature selection are regarded as particular capabilities. 

It is required to collect an adequate number of datasets (a set of inputs 
and corresponding outputs) and use them for training different network 
architectures from which the best combination is chosen [23]. 

By comparing the model outputs with the measured outputs, it is 
possible to examine a trained network. For this purpose, four statistical 
indexes, including mean absolute error (MAE), determination 
coefficient (R2), variance account for (VAF), and root mean square error 
(RMSE), should be obtained [23]. These indices can be mathematically 
expressed using the following formulae: 

 

R2 = 1 −
∑ (T−T)N

i=1

2

∑ (T−�̃�)N
i=1

2                                                                                   (1) 
 

VAF = [1 −
VAR(T−T)

VAR(T)
] × 100%                                                                (2) 

 

RMSE = √
1

N
∑ (T − 𝑇′)2N

i=1                                                                             (3) 
 

MAE =
1

N
∑ |(T − 𝑇′)|N

i=1                                                                             (4) 
 

Where, 𝑇, �̃� and 𝑇′are the measured, mean, and predicted values of T 
(Target), and N denotes the total number of data points. 

3. Numerical Simulation 

Rock mas is a mixture of intact rock and discontinuities. The 
properties of discontinuities affect the caveability of the rock mass. 
Therefore, the present research adopted the discrete element code 
(DEM) to simulate the jointed rock mass. For this study, the numerical 
model has a width of 1000 meters and a height of 350 meters (see Figure 
1). The model was divided into jointed and unjointed areas. The mesh 
lengths in these two areas were 0.5 m and 10 m, respectively. The model 
was large enough to prevent the effect of boundary conditions on the 
caving process [1&24]. 

There were two parts to the model: one that was joined and one that 
was not. These two areas had mesh lengths of 0.5 m and 10 m, 
respectively [1]. 

using an elastic model was solved first and uniform gravitational 
stress was distributed within it. To further refine the models, the Mohr-
Coulomb and Coulomb Slip models were applied. In other words, before 
creating the undercut, the model was run in the elastic state, and then 
the behavior of the material was changed from the elastic state to the 
plastic state according to the Mohr-Coulomb failure criterion, and the 
undercut was created. In the next steps, the material behavior model was 
solved according to the Mohr-Coulomb failure criterion. 

Models with dip angles of 20, 70, and 90 degrees were added with 
persistent and close joint sets. Undercuts with dimensions of 60 and 8 m 
were extracted next, and a block with a height of 210 m was caved. A 
view of the model and its boundary condition is depicted in Figure 1.  

The list of parameters and their reasonable ranges is presented in 
Table 1. 

4. Collection of datasets 

The undercut was extracted in sequential steps, and the caved area 
was drawn continuously and regularly. A view of displacements 
contours is presented in Figure 2. 

A caved area was defined as any block with a displacement greater 
than one meter after solving the model [25]. The model was solved for 
this purpose. A regular and continuous extraction of caved material was 
simulated by removing blocks with displacements greater than one 
meter. Based on the numerical model, the extracted area and 
deformation zones are shown in Figure 3. 

Various predefined and constant discontinuity models were used to 
increase the caving span until the caving phenomenon occurred 

according to a displacement criterion of 1 m. In other words, in a model 
with specific input data, the amount of the undercut span was changed 
many times until the displacement of the undercut roof reached one 
meter. Caving has occurred in the span where the amount of 
displacement reached one meter. A caved space was then created by 
running the model (Figure 3). Table 2 shows representative samples of 
480 numerical simulation results and inputs data for 480 numerical 
models. Table 3 presents descriptive information about the datasets. 

The results obtained from numerical modelling have already been 
validated by Alipenhani et al. [19] by comparing the results of physical, 
numerical, and empirical modelling. 

 

 
Figure 1. Numerical rock mass to model block caving. 

 
Table 1. Input parameters of numerical modelling 

Intact rock Value joints Value Parameter Value 

UCS (MPa) 130 Cohesion (MPa) 0 H (m) 500 

Density (Kg/m3) 2700 Friction angle (degrees) 30 K 1 

Cohesion (MPa) 4.7 Normal stiffness 
(GPa/m) 2 S (m) 3 

Friction angle 
(degree) 45 Shear stiffness (GPa/m) 0.2 

  

 

 
Figure 2 Displacement contours in first step of model. 

 

 
Figure 3. Displacement contours in the last step of the model. 

5. Artificial Neural Networks Architecture 

The present work used a backpropagation method with 480 
normalized datasets to train and test groups. After pre-processing, the 
best model was found with a 5-28-1 architecture (Figure 4), an 
exponential transfer function in the output, and a logistic function in 
the hidden layers. The calculated R2 of 0.981 indicates the competency 
of the presented ANN model (Table 4). 

6. Multivariate Regression Analysis (MVR) 

Using MVR, the relationship between the output and inputs was 
evaluated. MVR is a standard method of trend analysis in scientific 
functions. STATISTICA 12.0 software was used to perform regression  
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Table 2. Representative results of numerical simulation. 

Model No. 
Joint set Number  

(N) 
Undercut Depth  

(H, m)  
Joint Spacing 

 (S, m) 
Joint Friction angle 

(α, degree) 
Joint Inclination (D, degree) 

Minimum required caving span  
(MCS m)  

1 3 50 1 10 70 4 

2 3 50 1 30 60 8 

3 3 50 1 30 70 36 

4 3 100 5 35 25 50 

5 3 100 5 35 45 40 

6 2 200 5 35 60 22 

7 2 200 5 35 70 72 

8 2 400 5 35 45 38 

9 2 400 5 35 60 16 

10 2 400 3 23 25 12 
 

Table 3. Variables employed for model development. 

 

 
 
 
 
 
 
 
 

 

Table 4. The comparison of various neural network architecture. 
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R2 MAE (m) RMSE 
(m) 

VAF 
(%) R2 MAE 

(m) 
RMSE 

(m) VAF (%) 

1 5-28-1 Logistic Expo. 0.983 1.92 2.56 98.16 0.981 2.13 3.00 97.84 

2 5-12-1 Tanh Sine 0.982 1.84 2.43 98.33 0.96 2.67 3.66 96.63 

3 5-17-1 Logistic Sine 0.98 1.93 2.62 32.8 0.978 2.02 3.04 97.75 

4 5-28-1 Logistic Identity 0.975 2.27 2.97 97.48 0.973 2.52 3.39 97.14 

5 5-8-1 Expo. Identity 0.962 2.85 3.7 96.06 0.95 3.42 4.46 95.18 

6 5-3-1 Tanh Logistic 0.945 3.27 4.45 94.11 0.934 3.62 5.32 92.37 

7 5-10-1 Tanh Identity 0.97 2.44 3.21 97.05 0.95 3.46 4.48 95.06 

8 5-3-1 Expo. Logistic 0.71 7.60 10.23 58.95 0.66 8.73 11.97 46.78 

9 5-28-1 Sine Expo. 0.69 8.45 10.62 49.91 0.67 9.32 11.83 40.56 

10 5-8-1 Sine Expo. 0.56 10.15 12.97 30.45 0.52 11.55 14.79 76.03 

 

 
Figure 4. The optimal ANN model architecture. 

 

analysis to develop a statistical function to predict the mean minimum 
required caving span (MCS) (Eq. 5). Considering this equation, joint 
spacing, angle of friction, and dip of joint have direct relevance to the 
MCS. In contrast, the number of joint sets and depth indirectly impact 
the magnitude of the MCS. The RMSE and determination coefficient 
were obtained as 11.4 and 0.61, suggesting the comparatively poorer 
performance of the presented MVR model compared to the ANN 
model. 

The multivariate linear regression method was used. One of the 
conventional methods in multivariate analysis is the "Multiple Linear 
Regression" technique. Based on regression analysis, a linear 
relationship is established between the "Response Variable" and one or 
more "Explanatory Variables". 

 

𝑀𝐶𝑆  =  −6.98 − 6.13 (N) − 0.038 (H) + 5.58 (S) +  
                1.016(α) + 15(𝐷)                                                                              (5) 

7. CART Method 

A decision tree or classification tree is a part of the hierarchical 
technique that is widely utilized because of its capacity to cope with 

 Variables Number Symbol Mean Min Max Std. Dev 

Input 

Number of joint sets 480 N 2.50 2.0 3.0 0.50 

Joint Spacing (m) 480 S 3.0 1.0 5.0 1.63 

Angle of friction (degree) 480 𝛼 27/6 10.0 40.0 10.45 

Joint Dip (degree) 480 D 50.0 25.0 70.0 16.97 

Depth of Undercut (m) 480 H 187/5 50.0 400.0 134.18 

Output Minimum required Caving Span (m) 480 MCS 22/72 2.0 98 19.35 
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classification-based problems. Different parts are included in a tree’s 
structure, such as branches, roots, nodes, and leaves. The DT is an 
ascending solution approach where the root is at the top of the tree. The 
DT approach initiates the solution by choosing a random node as the 
tree’s potential root. Nodes denote the problem variables, and each node 
is classified into two branches. One of the independent variables helps 
in dividing the nodes. It is required to select a range during this division 
process by a trial-and-error approach. The performance indexes, such as 
RMSE, in the selected range should be minimized for each node [26] . 

Moreover, this approach is used for regression analysis. Since the 
advantages offered by the CART are more than other decision tree 
algorithms, researchers mostly prefer it [27]. The present study 
predicted the minimum required caving span by incorporating the 
CART approach using MATLAB software. Figure 3 indicates the 
decision tree developed for the MCS prediction. 

As shown in Figure 5, among the five parameters studied, the angle 
of friction of the joint surface is the most influential parameter. This 
parameter converts the decision tree into two parts: one with a friction 
angle greater than 26.5 degrees and the other one with a friction angle 
less than 26.5 degrees. In rock masses where the friction angle of the 
joints is less than 16 degrees, the minimum required caving span will be 
about 5.5 meters. Otherwise, the dip of the joints and their spacing will 
determine the minimum required caving span. Dip and spacing are 
essential in rock masses with a joint friction angle greater than 26.5 
degrees. 

 

 
Figure 5. Developed CART model for predicting the MCS. 

8. Support Vector Regression (SVR) 

Support vector machines can solve both regression and classification 
problems. The SVM in machine learning is known for handling 
structural risk minimization and is extensively utilized in various 
research areas.  The SVR is a subdivision of SVM and can be used to 
solve extrapolative and interpolative problems. In this SVR approach, 
the basis of formulization is the Vapnik–Chervonenkis (VC) theory. 
With a relatively low VC dimension, reasonable generalization can be 
reached, resulting in a low error probability [28]. Besides, a “loss 
function” is used in this approach for function approximation and 
regression estimation. The function is obtained as the difference 
between tube radius (ε) and predicted value. The idea of the ε-
insensitive loss function is shown in Figure 6. This Figure indicates that 
samples situated outside the ±ε margin are regarded as non-zero slack 
variables, keeping them apart from calculations. The loss function 
amount is zero within the ε–insensitive tube. Interested readers are 
referred to the previous studies for more details on the SVR and SVM 
[21&28]. 

 
Figure 6. The graphic representation of the SVR model [28]. 

9. Performance assessment 

The presented CART, MVR, ANN, and SVM models were evaluated 
with 96 (20% of the total data) new datasets in the development process. 
Figure 7 to 14 indicate the correlation between measured and predicted 
MCS for four models. The obtained values of validation indices are 
presented in Table 5. This table suggests that the ANN model performs 
better with maximum accuracy compared to the other models. In 
contrast, the conventional MVR has a very low efficiency compared to 
the other models. Additionally, as shown by the results, for problems 
with high nonlinearity and complexity, such as rock mass cavability, 
non-linear approaches with high flexibility (e.g. ANN) show higher 
capacities than classical linear approaches (e.g. MVR). 

 

 
Figure 7. Scatter plot of the actual versus predicted MCS for the multivariate 
regression analysis method. 

 
Figure 8. Comparison of measured and predicted values for the multivariate 
regression analysis method. 

 

 
Figure 9. Scatter plot of the actual versus predicted MCS for the classification and 
regression tree method. 
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Table 5. The scores obtained in test and train data for the MVR, ANN, CART, and SVM methods. 

 

 

 
 

Figure 10. Comparison of measured and predicted values for the classification and 
regression tree method. 

 
Figure 11. Scatter plot of actual versus predicted MCS by the ANN method 

 
Figure 12. Comparison of measured and predicted values for the ANN method. 

 

 
Figure 13 Scatter plot of actual versus predicted MCS for the SVMs method. 

 

 

 
 

Figure 14. Comparison of measured and predicted values for the SVMs method. 

10. The assessment of effect of input parameters on rock 
mass cavability 

Generally, the sensitivity analysis (SA) is conducted to evaluate the 
impact of input parameters on the related outcomes. There are different 
sensitivity analysis methods. The relevancy factor (RF) is one of the 
most commonly employed approaches using the following equation 
[29]. 

 

𝑅𝐹 = |
∑ (𝑥𝑖,𝑗−�̅�𝑙)(𝑦𝑖−�̅�𝑦

𝑛
𝑗=1 )

√∑ (𝑥𝑖,𝑗−�̅�𝑙)2 ∑ (𝑦𝑖−�̅�𝑦)2𝑛
𝑖=1

𝑛
𝑗=1

|                                                              (6) 

 

Where : 
𝑥𝑖,𝑗 : the jth value of the ith input variable; 
�̅�𝑙 : the input variable mean; 
�̅�𝑦: the predicted output mean. 
𝑦𝑖 : ith value of the predicted output. 
Figure 15 shows that the friction angle of the joint surface had the 

most significant effect on the minimum required caving span. This 
parameter is directly related to the caving span. After the joint surface 
friction, joint spacing directly affects the cavability. The dip of the joints 
also had the most negligible effect on the minimum required caving 
span. The depth and number of joint sets inversely affect the cavability. 
In other words, the higher the number of joint sets, the greater the depth 
of undercut, the lower the dip angle, the shorter the joint spacing, and 
the lower the friction angle of the joint surface, the greater the potential 
for rock mass cavability. 

 
 

 

Figure 15. Effect of input parameters on the minimum required caving span. 

 Train dataset Test dataset 
Model Name R2 RMSE (m) VAF (%) MAE (m) R2 RMSE (m) VAF (%) MAE (m) 

MVR 0.64 11.40 45.66 9.13 0.61 12.80 27.69 10.10 
CART 0.74 9.65 67.51 6.96 0.81 9.24 67.82 6.16 
SVM 0.80 8.43 74.85 6.42 0.81 9.01 75.16 7.00 
ANN 0.983 2.56 98.16 1.92 0.981 3.00 97.84 2.13 
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11. Conclusions 

In the present study, we implemented support vector regression, 
regression analysis, artificial neural network, and decision tree for 
investigating the impact of geomechanical parameters on the minimum 
required caving span in block caving mines. To this end, the database 
was provided from numerical modelling. Firstly, the superiority of 
various techniques was investigated, resulting in the approval of the 
neural network modelling competence. The coefficient values of MAE, 
RMSE, VAF, and R2 for the ANN approach were 1.92, 2.56, 98.16% and 
0.983. MVR modelling with the calculated values of 9.13, 11.40, 45.66% 
and 0.64 in the validation step for MAE, RMSE, VAF, and R2 showed 
poor performance of this method. The results of using the network 
modelling application indicated that joint properties are more 
influential compared to the dip and number of joint sets. The angle of 
friction has the most significant impact and the dip of the joints has the 
least effect on the minimum required caving span. 
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