[1] Orlando, L., 2005. Joint interpretation of geophysical data for archaeology. A case study. Subsurface Sensing Technologies and Applications, 6(2), 235-250.
[2] Al Farajat, M. (2009). Characterization of a coastal aquifer basin using gravity and resistivity methods: a case study from Aqaba in Jordan. Acta Geophysica, 57(2), 454-475.
[3] Sultan, S. A., Santos, F. A. M., & Abbas, A. M. (2010). Joint inversion interpretation for gravity and resistivity data: a case study at New Heliopolis City, Cairo, Egypt. Near Surface Geophysics, 8(1), 43-53.
[4] Karavul, C., Dedebali, Z., Keskinsezer, A., Demirkol, A., 2010. Magnetic and electrical resistivity image survey in a buried Adramytteion ancient city in Western Anatolia, Turkey. International Journal of Physical Sciences, 5(6), 876-883.
[5] Gambetta, M., Armadillo, E., Carmisciano, C., Stefanelli, P., Cocchi, L., & Tontini, F. C. (2011). Determining geophysical properties of a near-surface cave through integrated microgravity vertical gradient and electrical resistivity tomography measurements. Journal of cave and karst studies, 73(1), 11-15.
[6] Zhang, G., Lu, Q.T., Zhang, G.B., 2018. Joint Interpretation of Geological, Magnetic, AMT, and ERT Data for Mineral Exploration in the Northeast of Inner Mongolia, China. Pure and Applied Geophysics, 175(3), 989-1002.
[7] Ebrahimi, A., Dehghan, M. J., & Ashtari, A. (2019). Contribution of gravity and Bristow methods for Karez (aqueduct) detection. Journal of Applied Geophysics, 161, 37-44.
[8] Ghanati R., Ghari, H.A., Mirzaei M., Hafizi M.K. (2015). Nonlinear inverse modeling of magnetic anomalies due to thin sheets and cylinders using Occam’s method. In
: 8th congress of the Balkan geophysical society, Chania, Greece. doi:
https://doi.org/10.3997/2214-4609.201414178
[9] Urban, T.M., Rasic, J.T., Alix, C., Anderson, D.D., Chisholm, L., Jacob, R.W., Manning, S.W., Mason, O.K., Tremayne, A.H. & Vinson, D. (2019). Magnetic detection of archaeological hearths in Alaska: A tool for investigating the full span of human presence at the gateway to North America
. Quaternary Science Reviews, 211, 73-92. doi:
https://doi.org/10.1016/j.quascirev.2019.03.018.
[10] Al-Farhan, M., Oskooi, B., Ardestani, V. E., Abedi, M., & Al-Khalidy, A. (2019). Magnetic and gravity signatures of the Kifl oil field in Iraq.
Journal of Petroleum Science and Engineering, 183, 106397. doi:
https://doi.org/10.1016/j.petrol.2019.106397.
[11] Fedi, M., La Manna, M., & Palmieri, F. (2003). Nonstationary analysis of geomagnetic time sequences from Mount Etna and North Palm Springs earthquake.
Journal of Geophysical Research: Solid Earth, 108 (B10). doi:
https://doi.org/10.1029/2001JB000820.
[12] Caratori Tontini, F., De Ronde, C. E. J., Yoerger, D., Kinsey, J., & Tivey, M. (2012). 3‐D focused inversion of near‐seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B10). doi: https://doi.org/10.1029/2012JB009349
[13] Al-Garni, M. (2011). Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain.
Arabian Journal of Geosciences,
volume, 4, 385–400. doi:
https://doi.org/10.1007/s12517-009-0071-z.
[14] Ghari, H., Varfinezhad, R., & Parnow, S. (2023). 3D joint interpretation of potential field, geology, and well data to evaluate a salt dome in the Qarah‐Aghaje area, Zanjan, NW Iran.
Near Surface Geophysics, 21(3), 233-246. doi:
https://doi.org/10.1002/nsg.12252.
[15] Fedi, M. (2007). DEXP: A fast method to determine the depth and the structural index of potential fields sources.
Geophysics, 72 (1), I1-I11. doi:
https://doi.org/10.1190/1.2399452.
[17] Mehrvash, M., Abedi, M., Norouzi, G. H. (2023). A potential field geophysical study to image a Potash resource through Depth from Extreme Points, Ghareh-Aghaj deposit in NW of Iran.
International Journal of Mining and Geo-Engineering, 57(3), 241-250.
doi:
https://doi.org/10.22059/ijmge.2023.354047.595024.
[20] Parnow, S., Oskooi, B., & Florio, G. (2021). Improved linear inversion of low induction number electromagnetic data.
Geophysical Journal International, 224(3), 1505-1522. doi:
https://doi.org/10.1093/gji/ggaa531
[21] Pérez-Flores, M. A., Antonio-Carpio, R. G., Gómez-Treviño, E., Ferguson, I., & Méndez-Delgado, S. (2012). Imaging of 3D electromagnetic data at low-induction numbers.
Geophysics, 77(4), WB47-WB57. doi:
https://doi.org/10.1190/geo2011-0368.1
[22] Ghari, H., & Varfinezhad, R. (2022). 2D Linear inversion of ground-based controlled-source electromagnetic data under a low induction number condition
. Journal of the Earth and Space Physics, 48(3), 557-573. doi:
https://doi.org/10.22059/jesphys.2022.334600.1007385.
[24] McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers.
[25] Gallardo, L.A. (2004). Joint two-dimensional inversion of geoelectromagnetic and seismic refraction data with cross-gradients constraint (Doctoral dissertation, University of Lancaster).
[26] Pérez-Flores, M. A., Méndez-Delgado, S., & Gómez-Treviño, E. (2001). Imaging low-frequency and dc electromagnetic fields using a simple linear approximation.
Geophysics, 66(4), 1067-1081. Doi:
https://doi.org/10.1190/1.1487054.
[27] Tikhonov, A. N., & Arsenin, V. I. A. K. (1977). Solutions of ill-posed problems.
[30] Makhokha, D., & Fourie, F. (2016). A systematic approach to the interpretation of conductivity anomalies across intrusive dolerite dykes and sills in the Karoo Supergroup (Doctoral dissertation, MSc thesis. University of the Free State, Bloemfontein).
[31] Geel, C., 2014. Brief geologic overview of the Cape Fold Belt and Karoo Basin: Field excursion to Matjiesfontein, 10th Inkaba yeAfrica conference. Matjiesfontein, Inkba yeAfrica.
[32] Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J., & Duncan, A. R. (1997). The timing and duration of the Karoo igneous event, southern Gondwana.
Journal of Geophysical Research: Solid Earth,
102(B8), 18127-18138. doi:
https://doi.org/10.1029/97JB00972.
[33] Athanasiou, E. N., Tsourlos, P. I., Papazachos, C. B., & Tsokas, G. N. (2007). Combined weighted inversion of electrical resistivity data arising from different array types.
Journal of applied geophysics,
62(2), 124-140. doi:
https://doi.org/10.1016/j.jappgeo.2006.09.003.
[34] De Kock, M.O., Beukes, N.J., Götz, A.E., Cole, D., Robey, K., Birch, A., Withers, A. & Van Niekerk, H.S. (2016). Open file progress report on exploration of the Southern Karoo Basin through CIMERAKARIN borehole KZF-1 in the Tankwa Karoo, Witzenberg (Ceres) district. DST-NRF Centre of Excellence for Integrated Mineral and Energy Resources Analysis (CIMERA), University of Johannesburg, South Africa.
[35] Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.
[36] Vatankhah, S., Ardestani, V. E., & Renaut, R. A. (2014). Automatic estimation of the regularization parameter in 2D focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran.
Journal of Geophysics and Engineering,
11(4), 045001.
https://doi.org/10.1088/1742-2132/11/4/045001