[1] Yousefi, M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., 2019. "Exploration information systems―a proposal for the future use of GIS in mineral exploration targeting". Geology Reviews 111, 103005.
[2] Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S., Daneshvar Saein, L., 2019. "Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran). Journal of Mining and Environment 10: 705-715.
[3] Yousefi, M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., 2019. "Exploration information systems―a proposal for the future use of GIS in mineral exploration targeting". Ore Geology Reviews 111, 103005.
[4] Yousefi, M., E.J.M., Carranza, Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., Mihalasky, M., J., 2021. "Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-Art and Outlook". Journal of Geochemical Exploration 229, 106839.
[5] Carranza, E. J. M. 2008. “Geochemical Anomaly and Mineral Prospectivity Mapping in GIS” Handbook of Exploration and Environmental Geochemistry. Vol. 11, Elsevier, Amesterdam.
[6] Yousefi, M., Carranza, M. J. M. 2015. “Fuzzification of Continouse- value spatial evidence for mineral prosprctivity mapping” Computers & Geosciences 74: 97-109.
[7] Yousefi, M., Carranza, M. J. M. 2017. “Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values” Journal of African Earth Sciences 128: 47-60.
[8] Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. "Late cretaceous and early miocene andean-type plutonic activity in northern Makran and central Iran". J. Geol. Soc. Lond. 139, 605e614.
[9] Badrzadeh, Z., Aghazadeh, M., 2014. “Geochemistry and Structural Geology of Intrusive Masses of South-Western Part of Jiroft” Geochemistry Journal, 2, Payame Noor University
[10] Hezarkhani, A. 2006. “Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit” Journal of Asian Earth Sciences 27: 598–612.
[11] Roberts, R. G., Sheahan, P., Cherry, M. E. 1998. “ Ore Deposit Models” Geoscience Canada Reprint Series 3, Geological Association of Canada, Newfoundland.
[12] Berger, B. R., Drew, L. J. 2002. “Mineral – deposit models: new developments in: A.G. Fabbri, Gaal, G., Mccammon, R.B. (Eds.), Deposit and Geoenvironmental models for Rsource Exploration and Environmental Security” NATO Science Series 2, 80: 121-134.
[13] Pirajno, F. 1992. “Hydrothermal Mineral Deposits, Principles and Fundamental Concepts for the Exploration Geologists” Springer- verlag, Berlin.
[14] Robb, L. 2004. “Introduction to Ore- foming Processes” Blackwell, Oxford.
[15] Carlson, C. A. 1991. “Spatial distribution of ore depisits” Geology 19: 111-114.
[16] Vearcombe, J., Vearcombe, S. 1999. “The spatial distribution of mineralization: applications of Fry analysis” Economic Geology 94: 475- 486.
[17] Bonham – Carter, G. F. 1985. “Statistical association of gold occurrences with Landsat – derived lineaments, Timmins-Kirkland Lake area, Ontario, Canadian” Journal of Remote sensing 11: 195-211.
[18] Carranza, E. J. M, Hale, M. 2002. “Spatial association of mineral occurrence and curvi-linear geological features” Mathematical Geology 34: 199-217.
[19] Sillitoe, R. H. 1972. “A plate tectonic model for the origin of porphyry copper deposits” Econ. Geol. 67: 184-197.
[20] Sillitoe, R. H. 1997. “Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region” Aust. J. Earth Sci. 44: 373-388.
[21] Sillitoe, R. H., 2010.” Porphyry copper systems” Econ. Geol. 105: 3-41.
[22] Arribas, A. J. 1995. “Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines” Geology, 23: 337–340.
[23] Singer, D. A., Berger, V. I., Moring, B. C. 2005. “Porphyry copper deposits of the world: Database, map, grade and tonnage models” U.S. Geological Survey. Open-File Report : 1005–1060.
[24] Hezarkhani, A. 2006. “Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit” Journal of Asian Earth Sciences 27: 598–612.
[25] Guillou-Frottier, L., Burov, E. 2003. “The development and fracturing of plutonic apexes: Implications for porphyry ore deposits” Earth and Planetary Science Letters 214: 341–356.
[26] Qu, X., Hou, Z., Zaw, K., Youguo, L. 2007. “Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results” Ore Geology Reviews 31: 205–223.
[27] Ghasemi, A., Talbot, C. J. 2006. “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran)” Journal of Asian Earth Sciences 26: 683–693.
[28] Meshkani, S. A., Mehrabi, B., Yaghubpur, A., Sadeghi, M. 2013. “Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits” Ore Geology Reviews 55: 48–63.
[29] Zare Chahooki, M. A., 2010. “Moltivariate Analysis in SPSS” University of Tehran.
[30] Yousefi, M., Kamkar-Rouhani, A., Carranza, M. J. M. 2012. “Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping” Journal of Geochemical Exploration 115 : 24–35.
[31] Yousefi, M., Carranza, E. J. M., Kamkar-Rouhani, A. 2014. “Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping”.Journal of Geochemical Exploration 128:88–96.
[32] Yousefi, M. 2017. “Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran” Ore Geology Reviews 83: 200–214.
[33] Yousefi, M., Nykänen, V. 2016. “Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping” Journal of Geochemical Exploration 164: 94–106.
[34] Nykanen, V. 2008. “ Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield” Natural Resource Research 17: 29-48.
[35] Zadeh, L. A. 1997. “Introduction to hybrid artificial intelligence systems” in Tsoukalas, L. H., and Uhrig, R. E., eds., fuzzy and Neural Approaches in Engineering: john and sons. Inc., New York, p. 1-7.
[36] Porwal, A., 2006. “Mineral Potantial Mapping with Mathematical Geological Models” ph.D. Thesis, University of Utrecht, The Netherlands, ITC(International Institute for Geo-Information Science and Netherlands, ITC(International Institute for Geo-Information Science and Earth Observation) Publication No. 130, Enschede, 289pp.
[38] Carranza, E. J. M., Laborte, A. G. 2016. “Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines)” Natural Resources Research 25:35–50.
[39] Chen, Y., Wu, W., 2017. “Mapping mineral prospectivity using an extreme learning machine regression” Ore Geology Reviews 80 : 200–213.
[40] Huang, G. B., Zhu, Q. Y., Siew, C. K., 2006. “Extreme learning machine: theory and applications” Neurocomputing 70 : 489–501.
[41] Carranza, E. J. M., Woladi, T., Chikambwe, E. M. 2005. “Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmaties, Lundazi District, Zambia” Natural Resource Deposits 14: 47-63.
[42] Bonham-Carter, G. F., Agterberg, F. P., Wright, D, F. 1989. “Weigh of evidence modeling: a new apprpach to mapping mineral potential In: Agterberg, F. P., Bonham-Carter, G. F. (Eds.), Statistical Applications in the Earth Science” Geological Survey of Canada 89: 171-183.
[43] Yousefi, M., Carranza, M. J. M. 2015. “Prediction – area (P- A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling”Computers & Geosci Computers & Geosciences 83:72–79.
[44] Nezhad, S. G., Mokhtari, A. R., Rodsari, P. R. 2017. “The true sample catchment basin approach in the analysis of stream sediment geochemical data” Ore Geology Reviews 83; 127–134.
[45] Zhang, N., Zhou, K., Du, X. 2017. “Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu- Tousuquan island arc, Xinjiang, NW China” Journal of African Earth Sciences 128: 84–96.
[46] Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., Sun, W. 2016. “Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China” Arabian Journal of Geosciences 9: 298.
[47] Nykanen, V., Lahti, I., Niiranen, T., Korhonen, K. 2015. “Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland” Ore Geology Reviews 71: 853–860.
[48] Parsa, M., Maghsoudi, A., Yousefi, M. 2017. “A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits” Natural Resources Research 27: 15–28.
[49] Zuo, R. 2018. “Selection of an elemental association related to mineralization using spatial analysis” Journal of Geochemical Exploration 184: 150–157.
[50] Roshanravan, B., Aghajani, H., Yousefi, M., Kreuzer, O. 2018b. “An Improved Prediction-Area Plot for Prospectivity Analysis of Mineral Deposits” Natural Resources Research.
[51] Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161-186.
[27] Ivanička J., Polák M., Hók J., Határ J., Greguš J., Vozár J., Nagy A., Fordinál K., Pristaš J., Konečný V., Šimon L., Geological map of the Tribeč Mountains (1:50000). GSSR, Bratislava, 1998.
[28] Bielik, M., Kováč, M., Kučera, I., Michalík, P., Šujan, M. & Hók, J., 2002: Neoalpine linear density boundaries (faults) detected by gravimentry. Geologica Carpathica 53, 235–255
[29] Staškovanová, Veronika and Minár, Jozef. Modelling the geomorphic history of the Tribeč Mountains and the Pohronský Inovec Mountains (Western Carpathians) with the CHILD model, Open Geosciences, 8(1), 2016, pp. 371-389. https://doi.org/10.1515/geo-2016-0038
[30] Zahorec P., Pašteka R., Mikuška J., Szalaiová V., Papčo J., Kušnirák D., Pánisová J., Krajňák M., Vajda P., Bielik M., Marušiak I., 2017: Chapter 7 – National Gravimetric Database of the Slovak Republic. In: Paˇsteka R., Mikuˇska J., Meurers B. (Eds.): Understanding the Bouguer Anomaly: A Gravimetry Puzzle. Elsevier, Amsterdam, 113–125, doi: 10.1016/B978-0-12-812913-5.00006-3.