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A B S T R A C T 

 

In mineral exploration programs, reducing uncertainty and increasing exploration success have always been challenging issues. To modulate 
the above-mentioned uncertainty and increase exploration accomplishment, integration, and prospectivity analysis techniques are used for 
mineral exploration targeting. This paper aims to model the mineral potential of porphyry copper deposits in the Jiroft region, Kerman 
province. To achieve this goal and overcome the aforementioned issues resulting from the operation of complex ore-forming geological 
processes, continuous weighting methods through logistic functions were used while training points and analyst’s opinions were not 
contributed to the weighting procedure. Then, to generate exploration targets, the weighted layers were combined with three different 
integration methods namely, artificial neural network, geometric average, and fuzzy gamma operators. The comparison of the model obtained 
from the application of an artificial neural network with those obtained by the geometric average and the fuzzy gamma operators using 
prediction rate-area plots indicated that all the models have good overall performance and acceptable prediction rate. However, the 
performance of the artificial neural network model is slightly less than that of the other two models. Thus, the targets generated using the 
geometric average and fuzzy gamma operators are more reliable for planning further exploration programs.  
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1. Introduction 

The need to explore new mineral deposits at greater depths has been 
a challenge for industries. Therefore, more precise and cutting-edge 
exploration methods have been developed to identify new mineral 
deposits. These methods have been developed due to the wide variety of 
mineralization types, the characteristics of the explored mineralization 
as well as the diversity of natural conditions prevalent in complex 
geological environments. Efforts have always been made to develop 
methods that minimize the error in identifying promising areas. For this 
purpose, since the late 20th century, attempts have been conducted to 
compare and integrate the results of different exploration methods, 
called mineral potential modelling, to identify areas that require further 
exploration [1]. In general, the set of processes for analyzing different 
exploration data, extracting and identifying geological complications 
representing mineralization, and production of weighted control layers 
predicting mineralization, and finally combining spatial evidence to 
identify the target and promising areas for the exploration of unknown 
mineralization is called mineral potential modelling. The output of the 
mineral potential model is a map in which the possible presence of 
mineral deposits is predicted [2]. 

A variety of methods have been developed for assigning weights to 
exploration evidence data and combining them to model mineral 
potentials. The methods are divided into some general categories 
including knowledge-driven, data-driven, hybrid, user-defined functions  

 
 
 
 

and continuous methods using logistical functions [4,3]. Knowledge-
based methods are used at the preliminary stages of mineral exploration 
in areas with suitable geological conditions but limited previous 
exploration experience. These methods are generally used in areas 
where there are no or few known mineral deposits [5]. Data-driven 
approaches are applied in areas where there is enough exploration data 
and knowledge to implement supervised modelling methods [5] . In 
hybrid methods, which are a combination of data- and knowledge-
driven approaches, the results of data-driven methods are generally used 
to allocate weights in the knowledge-based method or vice versa [2].  In 
user-defined functions, weights are assigned to classes (patterns) of 
evidence maps in which the functions’ parameters are determined by 
expert judgments and trial and error practice [6]. In continuous 
weighting methods, sigmund (S-shaped) logistic functions are used to 
assign weights to mineral exploration data, resulting in fuzzified 
exploration layers. In this method, the values of logistic function 
parameters such as slope and inflection point are obtained without the 
intervention of experts through solving mathematical equations and 
calculations [7]. Each of these methods has its own advantages and 
disadvantages. Knowledge-based, data-driven, hybrid methods and user-
defined functions introduce bias and uncertainty due to the weighting 
process [6,5]. In the continuous weighting method using logistic 
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functions, none of the mentioned disadvantages exist and it is an 
efficient way for weighting the data, resulting in significantly reduced 
uncertainty in the outcomes [7]. In this regard, the purposes of this 
study are 1) to produce a model of mineral potential for porphyry 
copper deposits in the Jiroft region, Kerman province, using continuous 
weighting methods and 2) to evaluate and compare the performance of 
artificial neural network, geometric average and fuzzy gamma 
integration approaches. 

2. The Geology of the study area and exploration data 

The Jiroft region is located on the Urumieh-Dokhtar magmatic arc 
within the southern part of Kerman province, Iran [9,8]. One of the 
characteristic geological features of this region is the existence of a huge 
volume of intrusive and volcanic rocks with the Jurassic to Oligo-
Miocene age range [10]. The intrusive masses in the study area are 
moderately granular and their main minerals are plagioclase and 
clinopyroxene. The lithological composition of these massifs varies from 
granite to granodiorite. The main texture of these rocks is granular, but, 
subophitic, intergranular, and granophyric can also be seen in them [9]. 
In some parts of the study area, there are sedimentary rocks ranging 
from Triass to Oligo-Miocene, which are mainly composed of sandstone 
and limestone schists. A small part of the area also contains sedimentary-
metamorphic rocks of Paleozoic age. Most of the southern part of the 
study area is covered by Quaternary rocks [10]. The geological map of 
the Jiroft region is shown in Figure 1. There are nine known porphyry 
copper deposits in the study area that were used for training and 
evaluation purposes. In this study, the 1: 100000 geological map of the 
study area and the results of chemical analysis of 584 stream sediments 
geochemical samples, prepared by the Geological Survey and Mineral 
Exploration of Iran, were used as input data. 

3. The conceptual model of ore deposit of the type sought 

The first step in the process of building a mineral potential model is 
to define the conceptual or descriptive model of the deposit type sought, 
or more precisely, to define the conceptual genetic model for the 
targeted deposit. Prediction of mineral locations is mostly based on 
experimental relationships obtained from descriptive models of known 
deposits. A descriptive model of a type of mineral deposit based on the 
characteristics of a number of similarly known deposits is a guide to 
finding new deposits of the same type. When using GIS to prepare 
mineral potential maps, descriptive models of deposits play an 
important role in selecting and adapting forecast maps and assigning 
weight to them [5]. 

Defining a conceptual model for a type of deposit requires 
information and data from different types of geological processes related 
to mineral deposits as well as the type of deposit being explored. 
Therefore, the study and review of discovered reservoir models, the 
similar explored deposits in the study area, and related geological 
environments that describe the geological characteristics of a particular 
type of mineralization (to be explored), are extremely important. Given 
that the formation and occurrence of a large number of deposits and 
minerals (not all of them) depend on plate tectonics, it is necessary to 
study the structural and geological assemblages of the study area when 
designing a conceptual model. In addition, it is useful to study and 
review the findings related to certain geological processes that control 
mineralization (such as faults and other geological features) [16, 15, 14, 
13, 12, 11]. In addition, the analysis of spatial distribution and dispersion 
of mineral deposits of the same type as the target deposits, as well as the 
analysis of the association and spatial dependencies and dispersion of 
prospective mineral deposits and specific geological structures is also 
useful and should be considered [20, 19, 18, 17]. According to the above 
explanations and studies, the conceptual model of porphyry copper 
deposits is defined as follows: 
- Porphyry copper deposits result from the activity of hydrothermal 

processes after magmatism and are associated with granitoid intrusive 
rocks [23, 22, 21, 20, 19]. Therefore, in porphyry copper deposits, the 

mineral is spatially and genetically related to porphyry intrusions, so 
a wide range of intrusive rocks with diorite to granite composition 
including diorite, granodiorite, monzonite, and quartz monzonite play 
the role of metal sources and heat sources in the formation of 
porphyry copper deposits [24]. 

- Mineral-rich solutions take the least resistant path and move through 
cracks and fractures that facilitate the passage and circulation of 
hydrothermal fluids. Fault zones act as conduits for deep melt sources 
and hydrothermal fluids [20]. Therefore, fault zones are used to 
identify possible locations for porphyry deposits [28, 27, 26, 25]. 

- Porphyry copper deposits are often associated with anomalies of trace 
elements or mineralizing agents such as Sb, As, Pb, Zn, Ag, Au, Mo, 
Cu, or their halos in rocks, sediments, and soils [6]. 

4. Methods 

4.1. Generation of weighted maps for mineralization controlling 
factors 

Using the available data, the distribution maps of the lines and 
intrusive masses in the region were extracted. Then, control maps of the 
density of the lines and the proximity to the intrusive masses were made 
in a GIS environment. In order to analyze and process geochemical data 
from stream sediments, to construct a geochemical control layer, the 
factor analysis method was used, which is a statistical method for 
analyzing the information in the dataset, particularly useful when 
dealing with a large number of variables with unknown relationships. In 
this method, the variables are placed into factors, so that the percentage 
of variance is reduced from the first factor to the next factor. Therefore, 
the variables that are in the first factor are the most influential [29]. In 
this paper, using the stepwise factor analysis method and Geochemical 
Mineralization Probability Index (GMPI), which is an approach for 
mapping geochemical anomalies, the geochemical signatures were 
weighted. In addition, using the GMPI, the prediction ability of every 
geochemical sample is evaluated in terms of prospecting the targeted 
mineral deposit [30]. The GMPI is obtained by Equation (1) [30]: 

 

GMPI =
eFs

1+eFs
                                                                                                    (1) 

 

Where Fs is the value of the factor score for each geochemical sample. 
In order to construct a weighted geochemical controlling map, the 
stepwise factor analysis was performed on a dataset of eight indicator 
elements of mineralization, comprising Zn, Pb, Ag, Cu, As, Sb, Ba, and 
Au. The results are presented in Table 1. 

 
Table 1. Obtained factor values from the rotated principal component analysis. 

 

According to the values in Table 1, it can be seen that the elements 
silver, arsenic, and barium in the first column of the components of 
factor analysis have values above the threshold, so these three elements 
were considered together and another stage of analysis was conducted 
on them and then their weighted geochemical map was prepared using 
Equation 1. Also, the elements zinc, copper, and antimony, in the first 
column of the components of factor analysis had their absolute values 
above the threshold. Another step of factor analysis was performed on 
them and finally using equation 1, their weighted geochemical maps 
were made. Lead and gold elements, according to their values in the 
second and third columns of the table of components of factor analysis, 

Components  

3 2 1  

.101 
.002 
-.098 
-.229 
-.066 
.071 
-.018 
.968 

.276 
-.893 
.316 
.028 
.232 
.295 
.208 

.007 

-.711 
-.075 
.864 
-.568 
.851 
-.625 
.905 
-.043 

Zn 
Pb 
Ag 
Cu 
As 
Sb 
Ba 
Au 
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respectively, were studied as a single element and their map was drawn. 
Using the GMPI relation, the resulting maps were weighted. Finally, 
four weighted geochemical maps obtained from the four 
aforementioned factors were combined through the function of Yousefi 
et al., 2012 [30] to make a stronger geochemical controlling signature, 
and the final porphyry copper geochemical evidence map was generated 
(Figure. 2). More details about these methods can be found in Yousefi 
et al. (2012 and 2014) and Yousefi (2017) [32,31,30]. In order to produce 
weighted maps of fault density and proximity to the intrusive body, 
equation (2) was used [33] : 

 

FEV =
1

1+e−s(EV−i)
                                                                                       (2) 

 

Where FEV is a score between 0 and 1, EV is the value of each cell in 
the control map, and i and s are the inflection point and slope 
parameters of the function, respectively. Equations (3) and (4) were 
used to find the values of i and s [33]: 

 

S =
9.2

 EVmax−EVmin
                                                                                  (3) 

 

i =
EVmax+EVmin

2
                                                                                   (4) 

 

Where EVmin and EVmax are the maximum and minimum values of 
exploration data in the input maps, respectively. 

In this method, as previously stated, the values of i and s are calculated 
through the formula and there is no uncertainty due to the application 
of expert opinion in the selection of parameters i and s. weighted control 
maps of linear density and proximity to intrusive masses are shown in 
Figures 3 and 4. 

 

 
 

Figure 1. a) The location of the study area on the structural geological map of Iran 
b) The geological map of the study area with faults and the location of known 
porphyry copper ore occurrences and mines. 

 

Figure 2. The weighted geochemical control map. 

 

 
Figure 3. The weighted control map of the density of faults and lines. 

 

 
 

Figure 4. Weighted control map proximity to intrusive contacts. 
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4.2. Combining weighted control maps 

4.2.1. Fuzzy gamma method 

In this section, using the fuzzy gamma (=0.9) operator, three weighted 
controlling maps: fault density, proximity to intrusions, and 
geochemical anomalies were combined and a model of the mineral 
potential of porphyry copper deposits in the study area was produced 
(Figure 5). 

 

 
Figure 5. The final model with gamma fuzzy operator along with the known copper 
ore occurrences in the study area. 

 

4.2.2. Geometric average method 

In this section, according to the previous part, weighted control maps 
were combined with each other to produce the mineral resource 
potential model of the search, using the geometric average method and 
equation (5) [6] : 

 

GA(F1 ×  F2 × … × Fn) = (∏ Fi).1/n = √F1 × F2 × … × Fn
n n

 i=1                  (5) 
 

GA is the geometric average value of each cell in the final map, Fi is 
the weight of each cell in the control i map (assigned by the logistic 
function) and n is the number of weighted control maps. 

The mineral potential model of porphyry copper deposits made by 
the geometric average method is shown in Figure 6. 

4.2.3. Artificial neural network method 

Artificial neural networks (ANNs) are a method of artificial 
intelligence that is made by modelling the human nervous system and 
is widely used in engineering sciences to model the behavior and 
function of the human brain in a situation that requires the use of 
intelligence [34]. Using ANNs, nonlinear relationships between 
complex natural environment variables in which physical processes are 
not directly observed can be described [35]. While linear and ordinary 
mathematical methods cannot be used to model complex and 
ambiguous systems [36]. 

Each neural network consists of three stages: training, generalization, 
and execution. In the training phase, the network learns the patterns in 
the inputs within the training datasets that each neural network uses a 
specific rule to learn. Generalization means the power of the neural 
network to create acceptable structures for inputs that are not part of 
the training datasets. In the execution phase, the neural network is used 
to perform the function for which it was designed [37]. 

In exploratory studies and the identification of target areas, how 
mineral resources are arranged, their structure, and location are due to 

the complex interactions of various geological processes, so that the 
effect of these processes is indirectly on the characteristics and evidence 
of geology that are associated with mineral deposits. These geological 
properties, which are in fact identification criteria, are described by their 
response in one or more sets of control spatial data, which will be used 
in mineral potential modelling. It is difficult to describe the 
dependencies between these control variables and mineral deposits due 
to the great variety of natural conditions affecting mineralization and 
their modelling using linear methods is practically impossible. 
Therefore, considering the capabilities of ANNs, they can be effectively 
used in modelling mineral potential [36]. In order to train an ANN, a 
series of numerical data is needed. Here, the location of nine known 
copper occurrences in the study area and nine locations without copper 
storage were used for network training. Non-deposit locations were 
selected based on the following criteria [38]: 

A) The places without mineral deposits must have a random 
distribution. 
B) They are not located on the host rock of porphyry copper 
mineralization. 
C) They need to be located far away from known indexes. 
In the results of other methods, porphyry copper mineralization has 
been introduced as areas with very weak mineralization potential. 

The training process of ANNs, which is the first step in using this 
method, is performed by various training algorithms. Here, the extreme 
learning machine (ELM) training algorithm was used to train the 
desired neural network.  Because there was a problem of data shortage 
in this region (nine known occurrences in the region), and the ELM 
algorithm works better than other ANN training algorithms in 
conditions where available data is limited [39]. The ELM algorithm is a 
new training algorithm for Single-hidden-Layer Feedforward Networks 
(SLFNS). 

Unlike the old training algorithms for SLFNS, the ELM algorithm has 
the lowest error rate in training and output weights. Also, the training 
speed in the ELM algorithm is nearly 1000 times faster than other SLFNS 
training algorithms, including BP (back-propagation).  However, the 
performance of the ELM algorithm is much higher [40]. 

ELM algorithm output function with training set 
 

N = {(xi , ti), xi ∈ Rn, ti∈ Rm, i =  1, 2,…,N}                                                                    (6) 
 

The number of hidden nodes L and the hidden node function g (w, b, 
and x) are in equation (7) [40]: 

 

f (x) = ∑ βj 
g (wj bj x) = h(x) β L

 j=1                                                                           (7) 
 

Where β = [β1, β2, …, βL]T is the vector of output weights between the 
hidden layer with L node and the output node, and h(x)=[g(w1, b1, x),…, 
g(wL, bL, x)] is the output row vector of the hidden layer corresponding 
to input x. The value of b can be calculated from equation (8) [40]: 

 

β = HTT                                                                                     (8) 
 

Where T=(t1, t2,..., tN)T and HT is the output matrix of the hidden layer 
(H). 

To train the ELM training algorithm, a training data matrix including 
four columns and 18 rows (target variable, here known mineral deposit 
sites) were used. Thus, its 4th column includes numerical values (0 and 
1) for known deposit locations and non-deposit locations (18 in total). 
while its first, second and third columns include numerical values (fuzzy 
values between 0 and 1) corresponding to the weighted control maps. 

The network specifications used for training with the ELM training 
algorithm were considered as follows: 
- The network used is the feeder type and its training mode is 

supervisor. 
- 80% of the available data were randomly allocated for training and 

20% for testing. 
Two regression criteria (R) and Root Min Square Error (RMSE) were 

used to evaluate the performance of training and network testing. 
In an optimal mode of network training, the network parameters were 

as follows: 
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- The number of hidden (middle) layer neurons in the network is 40. 
-  The training and testing processes are repeated 20 times. 
- The values of parameters C1 and C2 (i.e., learning coefficients) are 

2.5 and 3, respectively. 
Finally, the network was trained in this optimal mode with the 

parameters mentioned above, and then this trained network was used to 
combine weighted control maps as follows: 

- Fuzzy numerical values of all cells of weighted control maps were 
extracted and arranged in three separate columns for each control 
map, in a matrix. 

- In the next step, to find the fourth column of this matrix, which is 
the network output vector and the final answer of the ANN, the 
above-trained network was used. 

- Finally, the numerical values obtained from the output vector of the 
neural network were mapped in the GIS. The final map integrated 
by the data-driven method of ANN is in Figure 7. 

5. The evaluation of models 

Mineral potential models made by different methods, to evaluate 
their efficiency and accuracy of estimation, should be evaluated and 
compared by different methods. In mineral potential modelling, the 
identified target areas should represent the actual spatial relationships 
between evidence and spatial patterns associated with the mineral 
deposits of the type being searched for. Therefore, the locations of 
known mineral deposits can be used to evaluate the weights assigned to 
evidence and spatial patterns as well as models produced, which is done 
by juxtaposing the locations of known mineral deposits [41,30]. 

Also, to determine the probability of the presence of mineral deposits, 
the ratio can be used by dividing the weight of different classes using 
the area occupied by that class. This means that if two different classes 
of spatial control maps with different areas have the same weight, the 
probability of finding undiscovered deposits in a class with a smaller 
area is higher than in another class [43,42]. 

Each of these two criteria can be used to evaluate the performance of 
a model. This means that if one class of the control map occupies less 
space than the other classes of the control map, it is easier to find 
undiscovered deposits in that class.  Besides, if a control map class has a 
larger number of known deposits than other control map classes, that 
class has a stronger potential for finding undiscovered deposits than 
other classes. In this regard, Yousefi and Karanza 2015 used both of the 
above criteria to evaluate the models simultaneously and proposed a 
Prediction Rate – Area diagram (P-A) to evaluate the models with the 
intersection of two curves serving as the criterion for evaluating models 
[46, 45, 44, 43, 6]. When evaluating mineral potential models, another 
criterion that should be considered is the share of undeposited locations 
in the evaluation of models. Accordingly, areas that have been identified 
as mineral potential areas in the models should have the least overlap 
with non-deposit sites where there is no geological evidence and 
favorable exploration criteria [7]. In this regard, researchers proposed a 
receiver performance characteristic curve to evaluate the models 
[49,48,47]. Using the Receiver Operating Characteristics (ROC), both 
the locations of mineral deposits and the locations without deposits are 
used to evaluate the models. However, the important criterion of the 
area occupied by the classes is not included in these curves. Therefore, 
to consider all the above criteria in the form of a single method for 
evaluating mineral potential models, an improved rate-area diagram was 
used here [50]. The overall performance of the model (Oe  ( is obtained 
from equation 9[50]: 

 

Oe= Pm - Pn                                                 (9) 
 

Pm and Pn are the values of the curves: the forecast rate of known 
deposits and the prediction rate of non-deposit locations at the 
intersection with the occupied area curve, expressed as a percentage. 
The result of the above relation will be a number in the range of 1 to -1, 
which a larger number indicating higher efficiency and performance of 
the evaluated model. Also, positive and negative numbers indicate the 

efficiency and inefficiency of the evaluated model, respectively, for use 
in the next stages of exploration of the prospecting deposit in the study 
area. In order to evaluate three models for the mineral potential of 
porphyry copper deposits made in the previous sections, first all three 
models were discretely classified by equal distances. Then, using the 
predicted rate-area diagram, the models were evaluated. The results of 
this evaluation are shown in Figures 8 to 13 and Table 2.  Examining 
both the forecast-area rate graphs for all three final models and the data 
obtained from these graphs as shown in Table 2, it can be seen that the 
prediction rate of known mineral deposits (Pm) for the fuzzy gamma 
model is 0.8 equal to that of the geometric average model. However, the 
Pm for the ANN-based model is 0.75. So, it can be concluded that in this 
regard, the model obtained from the ANN method is slightly weaker 
(5%) than the obtained models operated by the geometric average and 
fuzzy gamma methods. In contrast, by examining the prediction rate of 
non-deposit locations (Pn), it is observed that for the models obtained 
using the fuzzy gamma and geometric average methods, the values are 
0.4, but as can be seen, the Pn for the model generated by the ANN 
method is 0.38. Therefore, it can be concluded that the models obtained 
from the fuzzy gamma method and the geometric average are slightly 
weaker (by 2%) than the model obtained from the ANN method.  

 

 

 

 
Figure 6. The Final model produced by the geometric average method with the 
known occurrences and known porphyry copper mines in the study area. 

 

 
Figure 7. The final model from the method of ANNs with the known porphyry 
copper occurrences in the study area. 

 
Finally, by examining the overall performance (Oe) of the models, it 

is concluded that the models combined with the methods, namely fuzzy  
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Table 2. The values of Pm, Pn and Oe for the three mineral potential models. 

Oe Pn Pm Models 

0.40 0.40 0.80 Gamma (0.9) 

0.40 0.40 0.80 Geometric Average 

0.37 0.38 0.75  ANNs 
 

 
Figure 8. The final classified model (integrated with the fuzzy gamma method). 

 

 
Figure 9. The P-A diagram of the fuzzy gamma model. 

 

 
 

Figure 10. The final classified model (combined by the geometric average method). 
 

gamma and geometric average with an overall performance of 40% are 
similar to each other and stronger than the model obtained by ANNs 
with 37% overall performance. Thus, these models are relatively more 
efficient. 

 
Figure 11. P-A diagram of the geometric average model. 

 

 
Figure 12. Final classified model (integrated by artificial neural network method). 

 

 
 

Figure 13. P-A diagram of the artificial neural network model. 

6. Discussion 

The ANN method, which was used to combine weighted control 
maps and construct a mineral resource potential model in the present 
study, is a data-driven method and the results depend on the number of 
data used in the network training process [2]. In this case, the small 
number of training data has a negative effect on the results, while the 
methods of geometric average and fuzzy gamma are not actually data-
driven operators, and the results of combining control maps through 
these functions are independent of training samples and the known 
deposit location in the study area. Therefore, in the results of evaluating 
the final models obtained from three methods of geometric average, 
fuzzy gamma, and ANN, the ANN model showed lower overall 
performance and a lower prediction rate than the other two models due 
to the small amount of data used for network training. The fuzzy gamma 
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models and geometric average showed general performance as well as 
high and similar prediction rates, and were found to be more suitable 
and reliable in the next stages of exploration in the study area. To study 
the data-driven method of ANN more accurately in mineral potential 
modelling, it is suggested to use other ANN training algorithms or other 
methods based on artificial intelligence, such as support machining and 
random forest for integration of weighted control maps and production 
of the mineral potential model of porphyry copper deposits in the Jiroft 
region. Also, the processing of satellite images and preparation of 
alteration maps [51] of the study area, as well as the use of appropriate 
geophysical data in the process of combining weighted control layers, 
can further limit the exploration objectives and increase the efficiency 
of the final models obtained in the next tasks. These improvements will 
be applicable and doable. It is also recommended to examine recently-
developed exploration data analysis approaches on the dataset of the 
present study and compare the results [54, 53, 52]. 

7. Conclusion 

Although, the number of training points for training the ANN was 
limited, but the fast learning machine algorithm trained the network 
well, and the model produced by the ANN method showed a high and 
acceptable prediction rate. So, the rapid learning machine algorithm is a 
powerful and efficient algorithm for training ANNs in the stage of 
combining control maps and building mineral potential models, even in 
conditions where training points are very limited. 
- Models produced by the geometric average and fuzzy gamma 

methods both provide the same and acceptable forecast rate, and 
both models are efficient for use in the next stages of copper 
exploration in the study area. 

- By comparing the prediction rate of models produced by the 
geometric average and fuzzy gamma methods with the model 
produced by the ANN method, this result is obtained. Although all 
three models have a high and acceptable prediction rate, but the 
model produced by the ANN method is slightly weaker and the 
models produced by the methods of geometric average and fuzzy 
gamma, because of the location and the number of known copper 
occurrences in the study area are independent, show a relatively 
better performance. Therefore, they are recommended for use in 
later stages of exploration and for more detailed exploration of 
porphyry copper deposits in the Jiroft region of Kerman province. 
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