[1] Bonham-Carter, G.F., 1994. Geographic Information Systems for Geoscientists: Modelling With GIS. Pergamon, Oxford.
[2] Carranza, E. J. M. 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[3] Porwal, A., Gonz´alez-´Alvarez, I., Markwitz, V., McCuaig, T.C., Mamuse, A., 2010. Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geol. Rev. 38, 184–196.
[4] Porwal, A.K., Kreuzer, O.P., 2010. Introduction to the special issue: mineral prospectivity analysis and quantitative resource estimation. Ore Geol. Rev. 38, 121–127.
[5] Abedi, M., Norouzi, G.H., Bahroudi, A., 2012. Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci. 46, 272–283.
[6] Harris, J.R., Grunsky, E.C., 2015. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data. Comput. Geosci. 80, 9–25.
[7] Yousefi, M., Carranza, E.J.M., 2015a. Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput. Geosci. 74, 97–109.
[8] Yousefi, M., Carranza, E.J.M., 2015b. Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci. 79, 69–81.
[9] Yousefi, M., Carranza, E.J.M., 2015c. Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput. Geosci. 83, 72–79.
[10] Yousefi, M., Carranza, E.J.M., 2016. Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Nat. Resour. Res. 25, 3–18.
[11] Ford, A., Miller, J.M., Mol, A.G., 2016. A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Nat. Resour. Res. 25, 19–33.
[12] Yousefi, M., Nyk¨anen, V., 2017. Introduction to the special issue: GIS-based mineral potential targeting. J. Afr. Earth Sci. 12, 1–4.
[13] Abedi, M. 2018. An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data. Journal of African Earth Sciences, 139, 379-391.
[14] Li, N., Song, X., Li, C., Xiao, K., Li, S., Chen, H., 2019. 3D geological modeling for mineral system approach to GIS-based prospectivity analysis: case study of an MVT Pb–Zn deposit. Nat. Resour. Res. 28 (3), 995–1019.
[15] Kreuzer, O. P., Yousefi, M., Nykänen, V. 2020. Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.
[16] Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., Mihalasky, M. J. 2021. Data Analysis Methods for Prospectivity Modelling as applied to Mineral Exploration Targeting: State-of-the-Art and Outlook. Journal of Geochemical Exploration, 106839.
[17] Yousefi, M., Barak, S., Salimi, A., Yousefi, S. 2023a. Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018.
[18] Yousefi, M., Yousefi, S., Kamkar Rouhani, A. G. 2023b. Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting. International Journal of Mining and Geo-Engineering.
[19] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J. 2022a. Information value-based geochemical anomaly modeling: A statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177.
[20] Yousefi, M., Hronsky, J. M. 2023. Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[21] Mostafaei, K., Kianpour, M.,Yousefi, M. 2023. Delineation of gold exploration targets based on the prospectivity models through an optimization algorithm. Journal of Mining and Environment, (), -. doi: 10.22044/jme.2023.13472.2489.
[22] Hronsky, J.M.A., Kreuzer, O.P., 2019. Applying spatial prospectivity mapping to exploration targeting: fundamental practical issues and suggested solutions for the future. Ore Geol. Rev. 107, 647–653.
[23] McCuaig, T.C., Hronsky, J.M.A., 2000. The current status and future of the interface between the exploration industry and economic geology research. Rev. Econ. Geol. 13, 553–559.
[24] Ford, A., McCuaig, T.C., 2010. The effect of map scale on geological complexity for computer-aided exploration targeting. Ore Geol. Rev. 38, 156–167.
[25] Joly, A., Porwal, A., McCuiag, T.C., 2012. Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis. Ore Geol. Rev. 48, 349–383.
[26] Hagemann, S.G., Lisitsin, V.A., Huston, D.L., 2016. Mineral system analysis: Quo vadis. Ore Geol. Rev. 76, 504–522.
[27] Yousefi, M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. 2019. Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[28] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J. 2022b. Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. Journal of Geochemical Exploration, 235, 106967.
[29] Bahri, E., Alimoradi, A., Yousefi, M. 2023. Investigating the performance of continuous weighting functions in the integration of exploration data for mineral potential modeling using artificial neural networks, geometric average and fuzzy gamma operators. International Journal of Mining and Geo-Engineering.
[30] Grunsky, E. C., de Caritat, P. 2020. State-of-the-art analysis of geochemical data for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20, 217-232.
[31] Pirajno, F. 2008. Hydrothermal processes and mineral systems. Springer Science & Business Media.
[32] Zuo, R., Zhang, Z., Zhang, D., Carranza, E.J.M., Wang, H., 2015. Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarntype Fe deposits in Southwestern Fujian Province, China. Ore Geol. Rev. 71, 502–515.
[33] Yousefi, M. 2017a. Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200-214.
[34] Yousefi, M. 2017b. Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: a pixel-based mapping approach. Natural Resources Research, 26, 429-441.
[35] Afzal, P., Yousefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., Daneshvar Saein, L. 2019. Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10, 705-715.
[36] Zuo, R., Xiong, Y., Wang, J., Carranza, E. J. M. 2019. Deep learning and its application in geochemical mapping. Earth-science reviews, 192, 1-14.
[37] Zuo, R., 2020. Geodata Science-based mineral prospectivity mapping: a review. Nat. Resour. Res. 29, 3415–3424.
[38] Yousefi, M., Kamkar-Rouhani, A., Carranza, E. J. M. 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.
[39] Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., Peng, M., Han, R., 2019. Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118.
[40] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J. 2019a. Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geology Reviews, 113, 103115.
[41] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M. 2019b. Application of geometric average approach for Cu-porphyry prospectivity mapping in the Baft area, kerman. Journal of Geoscience, 29, 231-130.
[42] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M. 2021. Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran. Frontiers of Earth Science,15, 106-120.
[43] Zuo, R. 2018. Selection of an elemental association related to mineralization using spatial analysis. Journal of Geochemical Exploration, 184, 150-157.
[47] Cheng, Q. 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314- 324.
[45] Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., Erten, O. 2018. A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189, 122-137.
[46] Xiao, F., Wang, K., Hou, W., Erten, O. 2020. Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. Journal of Geochemical Exploration, 210, 106453.
[48] MamiKhalifani, F., Bahroudi, A., Aliyari, F., Abedi, M., Yousefi, M., Mohammadpour, M. 2019. Generation of an efficient structural evidence layer for mineral exploration targeting. Journal of African Earth Sciences, 160, 103609.
[49] Berman, M. 1977. Distance distributions associated with Poisson processes of geometric figures. Journal of Applied Probability, 195-199.
[50] Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32.
[51] Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., Taghizadeh, H. 2015. Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geology Reviews, 69, 187-198.
[52] Alimohammadi, M., Alirezaei, S., Kontak, D. J. 2015. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290-304.
[53] Zolanj, S., Dimitrijevic, M.N., Cvetic, S., Dimitrijevic, M.D., 1972. Geological Map of Sarduiyeh (1:100,000). Geological Survey of Iran publication.
[54] Zuo, R., Wang, J., Chen, G., Yang, M. 2015. Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration, 148, 12-24.
[55] Sillitoe, R. H., 2010., Porphyry copper systems. Econ. Geol.105,3–41.
[56] Almasi, A., Yousefi, M., Carranza, E.J.M., 2017. Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geol. Rev. 91, 1066–1080.
[57] Yousefi, M., Nyk¨anen, V., 2016. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochem. Explor. 164, 94–106.
[58] McCuaig, T.C., Beresford, S., Hronsky, J., 2010. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 38, 128–138.
[59] Kreuzer, O.P., Miller, A.V., Peters, K.J., Payne, C., Wildman, C., Partington, G.A., Puccioni, E., McMahon, M.E., Etheridge, M.A., 2015. Comparing prospectivity modelling results and past exploration data: a case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geol. Rev. 71, 516–544.
[60] Cooke, D. R., Hollings, P., Wilkinson, J. J., Tosdal, R. M. 2014. Geochemistry of porphyry deposits.
[61] Byrne, K., Lesage, G., Morris, W.A., Enkin, R.J., Gleeson, S.A., Lee, R.G., 2019. Variability of outcrop magnetic susceptibility and its relationship to the porphyry Cu centers in the Highland Valley Copper district. Ore Geol. Rev. https://doi.org/10.1016/j. oregeorev.2019.02.015.
[62] Kreuzer, O.P., Etheridge, M.A., Guj, P., McMahon, M.E., Holden, D.J., 2008. Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Econ. Geol. 103, 829–850.
[63] Carranza, E. J. M., Laborte, A. G. 2015. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777-787.
[64] Carranza, E. J. M., Laborte, A. G. 2016. Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35-50.
[65] Yousefi, M., Carranza, E.J.M., 2017. Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. J. Afr. Earth Sci. 128, 47–60.
[66] Abedi, M., Kashani, S. B. M., Norouzi, G. H., Yousefi, M. 2017. A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
[67] Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M. 2015. Machine learning redictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
[68] Belgiu, M., Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
[69] Karimpouli, S., Salimi, A., Ghasemzadeh, S. 2016. Seminonlinear spectral unmixing using a neural network based forward modeling. Journal of Applied Remote Sensing, 10,036006.
[70] Rodriguez-Galiano, V. F., Chica-Olmo, M., Chica-Rivas, M. 2014. Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28, 1336-1354.
[71] Chung, C. J. F., Fabbri, A. G. 2003. Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451-472.
[72] Nykänen, V., Lahti, I., Niiranen, T., Korhonen, K. 2015. Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853-860.
[73] Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen, K., Cook, N., Skyttä, P. 2017. Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, Northern Finland. Natural Resources Research, 26, 571-584.
[74] Robinson, G. R., Larkins, P. M. 2007. Probabilistic prediction models for aggregate quarry siting. Natural Resources Research, 16, 135-146.
[75] Nykänen, V. 2008. Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29-48.
[76] Lord, D. 2001. Measuring exploration success: an alternative to the discovery-cost-per-ounce method of quantifying exploration effectiveness. SEG Newsl., 45, 10-16.
[77] Hronsky, J.M.A., Groves, D.I., 2008. Science of targeting: definition, strategies, targeting and performance measurement. Aust. J. Earth Sci. 55, 3–12.
[78] Chen, Y., Wu, W. 2016. A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26-38.
[79] Zuo, R., Xiong, Y. 2020. Geodata science and geochemical mapping. Journal of Geochemical Exploration, 209, 106431.
[80] Carranza, E. J. M., Hale, M. 1997. A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 60,157-171.
[81] Yilmaz, H. 2007. Stream sediment geochemical exploration for gold in the Kazdağ dome in the Biga Peninsula, western Turkey. Turkish Journal of Earth Sciences, 16, 33-55.
[82] Yousefi, M., Carranza, E. J. M., Kamkar-Rouhani, A. 2013. Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. Journal of Geochemical Exploration, 128, 88-96.
[83] Lin, X., Meng, G., Pan, H., Cheng, Z., Yao, W., Cheng, X. 2019. Continental-scale stream sediment geochemical mapping in southern China: An insight into surface processes and tectonic framework. Journal of Geochemical Exploration, 207, 106362.
[84] Wang, J., Zhou, Y., Xiao, F. 2020. Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Applied Geochemistry, 120, 104679.
[85] Govett, G. J. S. 1983. Handbook of exploration geochemistry. Statistics, 2, 3-437.
[86] Berger, B. R., Ayuso, R. A., Wynn, J. C., Seal, R. R. 2008. Preliminary model of porphyry copper deposits. US geological survey open-file report, 1321, 55.
[87] Zuo, R., Carranza, E. J. M. 2011. Support vector machine: a tool for mapping mineral prospectivity.