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A B S T R A C T 

 

Geochemical exploration data play a vital role in mineral prospectivity modelling (MPM) for discovering unknown mineral deposits. In this 
study, the improved spatially weighted singularity mapping (SWSM) method is used to improve the practice of identifying geochemical 
anomalies related to copper mineralization in the Sarduiyeh district, Iran. Then, the random forest algorithm (RF) and geometric average 
function (GA) are used to integrate the resulting geochemical predictor map with other predictor maps. As demonstrated by the high area 
under the curve (AUC) values, this approach can effectively delineate prospective areas with RF and GA. However, compared to the GA 
approach (AUC=0.78), the RF technique (AUC = 0.98) offers superior prediction capabilities due to its enhanced ability to capture spatial 
correlations between predictive maps and known mineral deposits. The proposed procedure, a hybrid of the improved SWSM and RF has 
outstanding predictive capabilities for identifying prospective areas. A case in point is the new, highly prospective areas identified in this study, 
which present priority targets for future exploration in the Sarduiyeh district.  
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1. Introduction 

GIS-based mineral prospectivity modelling (MPM) is a multi-step 
process that employs powerful mathematical algorithms to produce a 
predictive model (e.g., [1-21]). Generally, these steps include (i) defining 
a conceptual model for mineral deposits of the type of interest, (ii) 
collecting geoscience spatial datasets, (iii) enhancing and extracting 
evidential features, (iv) generation weighted evidence layers and (v) 
generating a predictive model (e.g., [4-5], [7], [12], [22]). Hence, MPM 
is a highly complex decision-making task in mineral exploration 
targeting [20]. To implement an effective MPM, it is necessary to 
consider various aspects that may affect its results [2], [22-29]. The 
robustness of the underlying conceptual targeting model, the quality of 
multi-source and multi-scale exploration data, and predictive ability of 
the generated evidence layer have a substantial impact on the 
effectiveness of this modelling (e.g., [16], [28], [30]). Thus, a better 
understanding of ore-forming geological processes [15], [27], [31]and 
improved analysis of exploration data are required to make MPM more 
geologically meaningful [32-33]. In regional-scale mineral exploration, 
geochemical evidence layers are a vital input for MPM [22], [33-37]. 
Such predictor maps capture geochemical anomalies likely caused by a 
mineralizing system. As such, they present mappable evidence in 
support of the likely presence of a mineral deposit and an efficient 
parameter for delineating exploration target areas [30], [38- 42]. 
Therefore, capturing an efficient multi-element geochemical signature  

 
 

 
for use in MPM is a critical task [19], [28], [33], [43]. In this regard, to 
answer the question “how to generate a comprehensive geochemical 
signature that is statistically valid, geologically meaningful, and 
practically useful?” Ghasemzadeh et al. [28] (2022) proposed a 
strengthened singularity mapping technique ([44-46]) that was spatially 
enhanced and weighted by mineralization-efficient fault systems, which 
act as pathways or traps[47-48] .They proved that an improved spatially 
weighted method of mapping anisotropic geochemical signature (i.e., 
singularity), through the application of distance-distribution 
analysis[49] on fault systems and the RF integration approach (RF; 
[50]), is a more effective technique compared to the existing spatially 
weighted principal component analysis, to model geochemical 
anomalies. Following Ghasemzadeh et al. [28], this paper focuses on 
integrating SWSM-based enhanced geochemical signature with other 
evidential maps representing a set of targeting criteria using two high-
performance modelling techniques to identify highly prospective areas 
for the sought deposit-type in the Sarduiyeh area in support of mineral 
exploration. 

2. Study area and Dataset 

In this paper, the Sarduiyeh district, which is located in the Kerman 
province, Iran is used as the study area. This region, as a part of the 
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Urumieh-Dokhtar magmatic belt (Fig.1a), is considered to have 
excellent potential for Cu mineral exploration, especially porphyry 
copper system exploration, as several moderate to large porphyry-Cu 
deposits (PCDs), including Bondar Hanza, Daralu, and Sarmeshk have 
been found in this study area (e.g., [51, 52]). In addition, this area is 
highly prospective for other types of deposits such as Fe, Zn, and Pb 
[53]. The lithological units outcropping in the area are Cretaceous 
mélanges, Eocene volcanic rocks, sedimentary rocks of Eocene age, 
intrusive rocks, Oligocene–Miocene sediments, Neogene volcanic rocks, 
and Quaternary alluvial deposits (Fig.1b) [53]. The volcanic rocks of 
Eocene age (pyroclastics, trachyandesites, trachybasalts, andesite-
basalts, andesite lavas, tuffaceous sediments, rhyolites, rhyolite tuffs, 
agglomerate tuffs, agglomerates, ignimbrites, basaltic rocks and 
andesites) are intruded by Cretaceous, Eocene, Oligocene–Miocene and 
Neogene granodiorites, quartz-diorites, diorites, diorite porphyry, 
granite-porphyry and granites [53]. The area has undergone multiple 
stages of tectonic deformation, resulting in fault and fold systems [51-
53]. Ore minerals in the porphyry-Cu deposits are mainly galena, 
sphalerite, chalcopyrite, bornite, pyrit, and magnetite, while gangue 
minerals are mainly diopside, chlorite, epidote, quartz, calcite, and 
apatite [51-53]. Lineaments and faults in the study area were also 
specified using topography and geology maps of the Sarduieh and 
ASTER data. There are 23 known porphyry copper deposits (Fig.1b).  

 
 

 
 

Fig.1. (a) Location of the study area in Urumieh-Dokhtar volcanic belt of Iran and 
(b) simplified geological map of the study area. 

For a geochemical survey, the generation of a geochemical dataset is 
essential. The main sequential steps adopted in this study were: (i) 
sampling and (ii) analysis. In the first stage, 893 stream sediment 
samples were collected with a sampling density of one sample per km2. 
In this stage, the type of deposit sought, the tectonic setting of the study 
area, and the geological unit age are considered. In the second stage, the 
collected samples were air dried, sieved at 80 mesh, and analyzed for 15 
elements (i.e., Cu, Ag, As, Sb, Zn, Pb, Bi, Co, Cd, Cr, Ni, Mn (by Atomic 
Absorption Spectroscopy (AAS)), W, Mo (by Polarography) and Au (by 
Atomic Emission Spectroscopy (AES)). Among the analyzed elements, 
the concentration values of Cu, Mo, Au, Ag, As, Sb, Zn, and Pb are used 
in the current study to illustrate the implementation of the methods 
proposed in this paper.  Frequency distributions of all measured 
elemental data are positively skewed, indicating that the original data 
are not normally distributed (e.g., [54]). 

 

3. Methods and results 

3.1. Generation of evidence layers from exploration criteria 

According to the conceptual model of the porphyry-Cu deposit, 
different evidential layers can be derived from different types of 
individual mineral exploration datasets (e.g., geochemical data, 
geological data, multi-spectral remote sensing data, etc.). In this regard, 
a general flow chart that illustrates the study steps is summarized in Fig. 
2. Map visualization and spatial representation were processed using 
ArcGIS.10.7 software. The singularity mapping technique and machine 
learning algorithms have been coded and implemented in MATLAB 
R2016a workspace and R statistical freeware, respectively. Also, 
Microsoft Excel 2016 and Envi5.1 have been used as helpful software for 
mapping some plots and processing remote sensing data, respectively. 

In regional-scale exploration, the spatial distributions of ore-forming 
elements in stream sediment have been routinely used to prospect 
porphyry-Cu deposits [30], [33], [38], [40]. In this study, we used 
stream sediment uni-element concentration data of Cu, Mo, Au, Ag, As, 
Sb, Zn, and Pb to generate a multi-element geochemical signature for 
MPM. For modelling mineralization-related geochemical anomalies in 
the study area, concentration values of the indicator elements as 
mentioned above, were processed by an improved spatially weighted 
singularity mapping technique [28]. In terms of multi-fractal modelling, 
the SWSM model can be summarized as follows[45]: Assuming that ξ 
(ds) is the total amount of element concentration from samples in a 
small sampling domain of ds and w (ds) (0≤w(ds)≤1) indicates the 
corresponding weighting factor that represents the importance of the 
samples in ds, the singularity phenomenon in two-dimensional space 
can be described as a power law relationship between spatially weighted 
area 𝑆𝑖 = ∬

0

𝑆𝑖
𝑤 (𝑑𝑠)𝑑𝑠 and spatially weighted areal concentration 

𝜑(𝑆𝑖) = ∬
0

𝑆𝑖
𝑤(𝑑𝑠). 𝜉 (𝑑𝑠)𝑑𝑠: 

 

𝜑(𝑆𝑖) = 𝑆
𝑖

𝜖
2⁄                                                                                             (1) 

 

where the symbol ∝ stands for proportionally, and the exponent ϵ is 
the anisotropic singularity index. 

Processing of the geochemical exploration data by the improved 
SWSM technique, compared to using original raw data, not only allows 
for better discrimination of geochemical anomalies but also improves 
the prediction-rate of mineral occurrences in the MPM [28], [46]. Then, 
calculated anisotropic singularity value of indicator elements (i.e., Cu, 
Mo, Au, Ag, As, Sb, Zn, and Pb) were combined using a random forest 
algorithm (Breiman, 2001) to generate a more robust multi-element 
geochemical signature of porphyry-Cu mineralization in the study area 
(Fig. 3a). 

Porphyry-Cu deposits are mostly spatially and genetically associated 
with intrusive rocks, including felsic to intermediate porphyritic [55]. 
The prominent role of these intrusions in the form of mineralization is 
that they are the most apparent geological expression that acts as a heat 
engine, facilitating and marking the fluid flux [16], [20], [22], [27], [31], 
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[56]. Hence, the mineralization is expected to occur in the proximity of 
intrusive contacts, with the likelihood of a deposit being present 
decreasing with the increasing distance (e.g., [57]). Hence, in this study, 
to represent that empiricism and to create a fuzzy map of proximity to 
intrusive contacts (Fig.3b), Euclidian distance from intrusive contacts 
was calculated and fuzzified using Eq. [2]. 

 

𝐹𝑥 =
1

1+𝑒−𝑠(𝑥−𝑖)
                                                                                        (2) 

 

Where Fx is the fuzzy score, i and s are the inflexion point and slope, 
respectively, of the logistic function, and x is a raster map to be 
transformed in the [0,1] range. In the Eq [2], i and s can be calculated 
by  𝑖 =

𝐸𝑉𝑚𝑎𝑥+𝐸𝑣𝑚𝑖𝑛

2
 and 𝑠 =

9.2

𝐸𝑉𝑚𝑎𝑥−𝐸𝑣𝑚𝑖𝑛
; where EVmax and EVmin are 

maximum and minimum value in an input raster evidence layer (e.g., 
[57]). Therefore, Fig.3b indicates that the greatest distances from the 
intrusive contacts are assigned the lowest fuzzy scores, in contrast, the 
smallest distances from the intrusive contacts are assigned the highest 
fuzzy scores. 

 

 
Fig.2. Flow chart for illustrating the steps of procedures in this study. 

 
In the study area, different types of faults affected the lithological 

units. These fault zones act as primary channel ways for deeply sourced 
melts and facilitate the migration of ore-bearing fluid [15-16], [27], [58-
59]. Thus, areas with high fault density (FD) represent favorability for 
porphyry-Cu mineralization. In this paper, we used FD as an evidence 
layer (to represent structural control evidence of prospectivity for 
porphyry-Cu mineralization) in the study area. Then, for transforming 
the FD values into logistic space, we applied Eq. [2] to obtain a weighted 
evidence map of FD (Fig. 3c). 

Porphyry-Cu deposits are associated with various hydrothermal 
alteration types ([60], some of which, such as argillic alteration, extend 
a few to tens of kilometers around mineralization trap sites (e.g., [55], 
[61]). Thus, these wall-rock alterations are important targeting criteria 
for prospecting porphyry-Cu deposits. In this study, argillic alteration 
areas have been recognized from ASTER data using the LS-fit function. 
Then, to generate proximity to argillic alteration, we applied the 
Euclidian distance function around centroids of these proxies and 

weighted them using a logistic-based continuous approach (i.e., Eq [2]). 
The Map of proximity to argillic alteration is shown in Fig. 3d. 

 

 
 

Fig.3. Derived evidence layer fromm exploration data (a) SWSM-based multi-
element geochemical signiture (b) proximity to intrusive contacts (c) fault density 
(d) proximity to argilic alteration. 

 

3.2. Integration of generated evidence maps for mineral exploration 
targeting 

It is generally accepted that each evidence layer contains information 
about how mineralization is formed by representing a particular 
mappable criterion [3], [27], [58]. Thus, after the generation of various 
evidence layers, they should be integrated based on measured spatial or 
genetic associations with the targeted mineral deposits and each other 
[27], [62-66]. For this, numerous researchers have proposed and applied 
various methods, which are classified into two groups, including data-
driven and Knowledge-drive to integrate multiple evidential layers for 
the MPM to delineate target areas for further exploration of a certain 
deposit-type (e.g., Porphyry Cu-deposit) [2], [7-9]. In this paper, to 
integrate the generated evidential layer, we applied two different 
functions, namelythe geometric average [9] function and the random 
forest algorithm [50], [62-63], [67] for comparison purpose. 

The geometric average (GA; [9]) is an unsupervised integration 
function without using training data. This GIS base integrates the values 
of various evidence maps in a single but comprehensive model. The 
main advantage of the GA method is that it integrates both optimistic 
and pessimistic input evidence layers to produce an effective and 
comprehensive MPM model. Hence, according to the proposed 
equation by Yousefi and Carranza [9], to generate a porphyry-Cu 
exploration targeting model in a unit cell of a study area, GA can be 
defined as the nth root of the products of input indicator values as 
follows: 

 

𝐺𝐴𝑃𝑜𝑟𝑝ℎ𝑦𝑟𝑦−𝐶𝑢
= (𝐹𝐹𝐷, 𝐹𝐼𝐶 , 𝐹𝐺𝑆, 𝐹𝐹𝐴) =  

                            (∏ 𝐹𝑖
4
𝑖=1 )0.25 = √𝐹𝐹𝐷, 𝐹𝐼𝐶 , 𝐹𝐺𝑆, 𝐹𝐹𝐴

4                                        (3) 
 

where FFD, FIC, FGS, and FFA denote, respectively, maps of fault density, 
proximity to intrusive contacts, SWSM-based multi-element 
geochemical signature, and proximity to argillic alteration. The GA-
based prospectivity model for porphyry-Cu deposit using Eq [3] is 
shown in Fig.4a. 

The RF algorithm ([50]), is a supervised and data-driven integration 



458 S. Ghasemzadeh et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 57-4 (2023) 455-460 

 

method. RF ([50]) is one of the well- regarded ensemble models, which 
can be used efficiently for the MPM [62-63]. RF is known as a 
homogeneous ensemble model, because it uses a collection of a single 
base learning algorithm ([68], [69]), DTs, to predict a target variable 
based on evidential variables [6], [62-63], [67]. These DTs 
can be categorized into classification and regression trees (RTs) [50]). 
For the MPM, the RF is based on the regression mode of DT [70]. In 
this study, we generated a RF-based prospectivity model using the same 
four spatial evidence layers for comparison with the GA-based 
prospectivity model (Fig.4b). 

 

 
 

Fig.4. Prospectivity map for porphyry-Cu deposits generated through integrating 
multiple evidence layers using (a) Geometric average function (b) random forest 
algorithm. 

4. Evaluation of the model 

Evaluation of mineral prospectivity model results and measuring the 
success of exploration targeting is an absolutely essential task [71-73]. In 
this paper, the receiver operating characteristic curve (ROC) ([72], [74-
75]) was employed to evaluate the efficiency of the prospectivity models 
generated by GA and RF. The ROC curve for both prospectivity models 
(Fig. 5) appears above the gauge line. The results of high AUC values 
indicate that implemented modelling can effectively delineate 
prospective areas both with RF and GA; however, compared with the 
GA (with AUC=0.78), the RF performs better prediction capabilities 
(with AUC=0.98) due to its enhanced ability to capture the correlations 
between predictive maps and known mineral deposits. The continuous 
prospectivity score, is generated using the RF algorithm, as an efficient 
model, should be discretized to delimit exploration targets. In this study, 
therefore, the prediction-area (P-A; [8]) plot (Fig. 6a) was used as a 
quantitative criterion to delimit target areas for further exploration (e.g., 
[33]). As recommended by Yousefi and Carranza [8], the X value 
corresponding to the intersection point in the P-A plot (Fig.6a) was 
conducted to determine the reliable threshold for classification. Thus, 
0.9 was extracted as the threshold for making highly favorable 
delineated exploration targets (Fig.6b). 

5. Discussion 

Mineral exploration is a multi-stage activity that seeks to 
progressively reduce prospective areas and refine drill targets until a 
discovery is made. The MPM is most useful in the initial stages of 
mineral exploration and at scales ranging from regional to camp scale 
[15], [76-77]. For the MPM of a certain deposit type (e.g., porphyry 
deposits) within a particular target area, a set of multi-disciplinary data 
has to be compiled, collated, and analyzed effectively (e.g., [27], [77]). 
Despite the development of various simple to complex mathematical 
methods over the past decades, the MPM continues to be a challenging 
task (e.g., [25]). For example, the application of incorrect or 
inappropriate modelling approaches can not only heighten exploratory 
bias and uncertainty but also lead to failure arising from missed 
opportunity costs linked to spending time and money on exploring and 
testing unprospective targets [59], [78]. As discussed by Yousefi et al. 
[27], Zuo and Xiong [37], and Zuo [79], extracting information from 
mineral exploration data (e.g., geochemical data), generating knowledge  
 

 
Fig.5. ROC plots for the evaluation capabilities of random forest algorithm and 
geometric average function for mineral prospectivity modeling. 
 

 
Fig.6. (a)P-A plot for RF-mineral prospectivity model (b) Highly favorable 
delineated exploration targets for porphury-Cu deposits in Sarduiyeh district. 

 
from this information, and gaining insight from this knowledge are 
appropriates solution for defining more reliable mineral exploration 
targets. 

In this regard, stream sediment samples are representative of the 
lithologies exposed to erosion upstream [19], [28], [35], [40], [42], 
[44], [80-82]. Thus, such surface media, as weathered derivatives of 
rocks, are essential sources of information. Consequently, processing of 
stream sediment geochemical data and the methods of anomaly pattern 
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recognition are effective ways to gain geological knowledge, giving the 
exploration geologists insights to recognize better and more effectively 
follow up any anomalous results [27], [36-37]. Thus, to obtain insights 
into the definition of exploration strategies aimed at vectoring toward 
undiscovered mineral deposit sites, it is critical to develop innovative 
techniques for extraction of mineralization-associated anomalies from 
stream sediment geochemical data [83-84]. The improved SWSM 
technique ([28]), which has the ability of recognizing mineralization-
related geochemical anomalies, was used to map anisotropic singularity 
values of elements, indicating the presence of mineral deposits in this 
study. 

Geochemical indicator elements show dispersion halos in and around 
mineral deposits in response to some ore-forming factors such as 
magma composition, the reaction between hydrothermal fluids and wall 
rocks, and/or sulfur species gradient in ore-bearing hydrothermal fluids 
[85-86]. Therefore, dispersion halos of every indicator element contain 
helpful information about the ore-deposition processes, which should 
be routinely extracted from the geochemical data [27], [36], [43]. 
Consequently, integrating the geochemical indicators results in a more 
robust signature, helping exploration geologists to vector towards 
undiscovered deposit sites. In this study, to generate an upgraded 
geochemical signature (Fig.3a), the RF algorithm ([50]) was applied. 

For the evaluation of mineral exploration targeting models, which 
were generated using GA and RF integration methods, we applied the 
ROC curve (Fig.5) [72], [74-75]. A Comparison of the integration 
results demonstrated that the RF is superior to GA for targeting areas 
with potential for porphyry-Cu deposits. It is important to note here 
that, RF unlike non-parametric supervised classifiers known as single 
classifiers, such as support vector machines [5], [87], deliver excellent 
results in the field of MPM. This is because the RF algorithm is not 
sensitive to the quality of training samples and overfitting. 

6. Conclusion 

In this paper, a case study applies the improved Spatially Weighted 
Singularity Mapping (SWSM) technique for identifying geochemical 
anomalies associated with porphyry-Cu mineralization in the Sarduiyeh 
district. Then, the SWSM-based multi-element geochemical signature 
was integrated with other evidential layers for Mineral Prospectivity 
Modelling (MPM) to delineate target areas for further exploration using 
both random forest (RF) algorithm and Geometric average (GA) 
method. 

The findings of this study can be summarized as follows: 
• The improved SWSM can simultaneously model element 

enrichment and depletion, consequently, it can be used to derive a 
more robust geochemical signature for use in the MPM.  

• The improved SWSM not only facilitates a better understanding of 
ore-forming geological processes but also improves the prediction-
rate of the MPM. 

• The hybrid approach used here, which combines the improved 
SWSM, RF, and prediction-area plot, is an effective tool for 
delineating target areas. 
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