[1] Rahbari, M. (2022). Process mineralogy of flotation - scavenger circuit of copper concentration plant - Sungun Copper Complex. Master of Science Thesis in Mining Engineering – Mineral Processing, Urmia University.
[2] Bahrami, A., Kashani, R. H., Kazemi, F., & Ghorbani, Y. (2022). Oxidation-reduction effects in the flotation of copper sulfide minerals and molybdenite–A proof of concept at industrial scale. Minerals Engineering, 180, 107505. https://doi.org/10.1016/j.mineng.2022.107505
[3] Bahrami, A., Mirmohammadi, M., Ghorbani, Y., Kazemi, F., Abdollahi, M., & Danesh, A. (2019). Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals. International Journal of Minerals, Metallurgy, and Materials, 26, 430-439. https://doi.org/10.1007/s12613-019-1733-9
[4] Cisternas, L. A., Méndez, D. A., Gálvez, E. D., & Jorquera, R. E. (2006). A MILP model for design of flotation circuits with bank/column and regrind/no regrind selection. International Journal of Mineral Processing, 79(4), 253-263. https://doi.org/10.1016/j.minpro.2006.03.005
[5] Marković, Z. S., Janković, A., & Tomanec, R. (2008). Effect of particle size and liberation on flotation of a low grade porphyry copper ore. Journal of Mining and Metallurgy A: Mining, 44(1), 24-30.
[6] Shrimali, K., Jin, J., Hassas, B. V., Wang, X., & Miller, J. D. (2016). The surface state of hematite and its wetting characteristics. Journal of colloid and interface science, 477, 16-24. https://doi.org/10.1016/j.jcis.2016.05.030
[7] Espinoza-Ortega, O., Song, S., Lopez-Valdivieso, A., Galindo-Murillo, F., & Reyes-Bahena, J. L. (2003). Regrinding and floc-flotation of silver sulphide scavenger concentrate. Mineral Processing and Extractive Metallurgy, 112(2), 90-94. https://doi.org/10.1179/037195503225002772
[8] Ekmekçi, Z. A. F. İ. R., Can, M., Ergün, Ş. L., Gülsoy, Ö. Y., Benzer, H., & Çelik, İ. B. (2005, June). Performance evaluation of ÇBİ flotation plant using mineralogical analysis. In The 19th International Mining Congress and Fair of Turkey, İzmir (pp. 233-240).
[9] Agheli, S., Hosseini, M., Haji Amin Shirazi, H., & Vaziri Hassas, B. (2020). A novel regrinding circuit to deal with fluctuation in feed grade at the Sarcheshmeh copper complex. Separation Science and Technology, 55(1), 98-111. https://doi.org/10.1080/01496395.2018.1561718
[10] Celik, I. B., Can, N. M., & Sherazadishvili, J. O. H. N. (2010). Influence of process mineralogy on improving metallurgical performance of a flotation plant. Mineral Processing & Extractive Metallurgy Review, 32(1), 30-46. https://doi.org/10.1080/08827508.2010.509678
[11] Asghari, M., Nakhaei, F., & VandGhorbany, O. (2019). Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(6), 761-778. https://doi.org/10.1080/15567036.2018.1520356
[12] Mohammadi, J., Shojaei-Baghini, V., Khoshdast, H., & Musavi, S. (2018). Investigating the possibility of recovery the tails of cleaner-scavenger flotation circuit of the Midovk copper complex. The Chemistry conference, Tehran – Iran. https:// bbec.ac.in/wp-content/uploads/wpforo/default_
attachments/1628309142-FLUID-MECHANICS-COMPREESIBLE-FLOW-NOTES.pdf.
[2] Cross, H. (1936). Analysis of Flow in Networks of Conduits or Conductors. Bulletin 286, Engineering Experiment Station, University of Illinois, Urbane, 29 pp.
[3] Basha, H.A., and Kassab, B.G. (1996). Analysis of water distribution systems using a perturbation method. Appl Math Model. 20(4):290–7.
[4] Arsene, C.T.C., Bargiela, A., and Al-Dabass, D. (2004). Modelling and simulation of water systems based on loop equations. Int J Simul, 5(1-2):61–72.
[5] Giustolisi, O. (2010). Considering actual pipe connections in water distribution network analysis. Journal of Hydraulic Engineering. 136(11):889-900.
[6] Ayad, A., Awad, H., and Yassin, A. (2013). Developed hydraulic simulation model for water pipeline networks. Alexandria Eng, J. 52:43–49.
[7] Boanoa, F., Scibettab, M., Ridolfia, L., and Giustolisic, O. (2015). Water distribution system modeling and optimization: a case study. Procedia Engineering 119:719 – 724.
[8] Creacoa, E., and Franchinib, M. (2015). The identification of loops in water distribution networks. Procedia Engineering. 119:506 – 515.
[9] Coelho, PM., and Pinho, C. (2007). Considerations about equations for steady state flow in natural gas pipelines. J Brazil Soc Mech Sci Eng. 29(3):262–73.
[10] Brkic, D. (2009). An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks. Applied Energy. 86:1290-1300.
[11] Wang, Y.J. (1982). Ventilation Network Theory, Mine Ventilation and Air Conditioning. 2nd ed., H. L. Hartman (Ed.), Wiley-Interscience, NY. 167-195.
[12] Wang, Y.J. (1982). Critical Path Approach to Mine Ventilation Networks with Controlled Flow. Trans. SME-AIME. 272:1862-72.