[1] E. J. M. Carranza and A. G. Laborte, “Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm,” Ore Geol. Rev., vol. 71, pp. 777–787, 2015.
[2] M. Yousefi and E. J. M. Carranza, “Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping,” Comput. Geosci., vol. 83, pp. 72–79, 2015.
[3] A. Porwal, E. J. M. Carranza, and M. Hale, “Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India,” Nat. Resour. Res., vol. 12, no. 3, pp. 155–171, 2003.
[4] M. Abedi, G.-H. Norouzi, and N. Fathianpour, “Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping,” Int. J. Appl. Earth Obs. Geoinf., vol. 21, pp. 556–567, 2013.
[5] M. Abedi, S. A. Torabi, G.-H. Norouzi, and M. Hamzeh, “ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping,” J. Appl. Geophys., vol. 87, pp. 9–18, 2012.
[6] M. Abedi, S. B. M. Kashani, G.-H. Norouzi, and M. Yousefi, “A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran,” J. African Earth Sci., vol. 128, pp. 127–146, 2017.
[7] M. Shabankareh and A. Hezarkhani, “Application of support vector machines for copper potential mapping in Kerman region, Iran,” J. African Earth Sci., vol. 128, pp. 116–126, 2017.
[8] S. Ghasemzadeh, A. Maghsoudi, M. Yousefi, and M. J. Mihalasky, “Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling,” Ore Geol. Rev., vol. 113, p. 103115, 2019.
[9] H. Rahimi, M. Abedi, M. Yousefi, A. Bahroudi, and G. R. Elyasi, “Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof,” Appl. Geochemistry, vol. 128, no. December 2020, p. 104940, 2021.
[10] G. F. Bonham-Carter, “Geographic information systems for geoscientists-modeling with GIS,” Comput. methods Geosci., vol. 13, p. 398, 1994.
[11] L. Zürcher et al., “Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment,” US Geological Survey, 2015.
[12] J. D. Lowell and J. M. Gumbert, “Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Econ,” in Geol, 1970.
[13] R. H. Sillitoe, “Porphyry copper systems,” Econ. Geol., vol. 105, no. 1, pp. 3–41, Jan. 2010.
[14] A. P. Crosta, C. R. De Souza Filho, F. Azevedo, and C. Brodie, “Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis,” Int. J. Remote Sens., vol. 24, no. 21, pp. 4233–4240, 2003.
[15] F. A. Kruse et al., “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ., vol. 44, no. 2–3, pp. 145–163, 1993.
[16] G. I. Tripp, “Nature of the Archaean zuleika shear zone, Kalgoorlie, Western Australia,” in Applied Structural Geology for Mineral Exploration and Mining, Kalgoorlie 2002, Australian Institute of Geoscientists, Extended Abstracts, 2002, pp. 212–215.
[17] G. I. Tripp, “Fault control on Archaean gold deposits, Ora Banda, Western Australia,” Aust. Inst. Geosci. Newsl., vol. 62, pp. 1–6, 2000.
[18] R. H. Sibson, “Earthquake rupturing as a mineralizing agent in hydrothermal systems.,” Geology, vol. 15, no. 8, pp. 701–704, Aug. 1987.
[19] D. P. Cox, “Descriptive model of porphyry Cu,” Miner. Depos. Model. US Geol. Surv. Bull., vol. 1693, p. 76, 1986.
[20] R. M. Tosdal, “Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits,” Rev. Econ. Geol., vol. 14, pp. 157–181, 2001.
[21] H. O. Safari, L. Bagas, and B. Shafiei Bafti, “Structural controls on the localization of Cu deposits in the Kerman Cu metallogenic province of Iran using geoinformatic techniques,” Ore Geol. Rev., vol. 67, pp. 43–56, 2015.
[22] E. J. M. Carranza, Geochemical anomaly and mineral prospectivity mapping in GIS, vol. 11. Elsevier, 2008.
[23] A. Porwal, E. J. M. Carranza, and M. Hale, “Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping,” Nat. Resour. Res., vol. 12, no. 1, pp. 1–25, 2003.
[24] A. Porwal, E. J. M. Carranza, and M. Hale, “A hybrid neuro-fuzzy model for mineral potential mapping,” Math. Geol., vol. 36, no. 7, pp. 803–826, 2004.
[25] A. Porwal, E. J. M. Carranza, and M. Hale, “A hybrid fuzzy weights-of-evidence model for mineral potential mapping,” Nat. Resour. Res., vol. 15, no. 1, pp. 1–14, 2006.
[26] M. Yousefi, A. Kamkar-Rouhani, and E. J. M. Carranza, “Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping,” J. Geochemical Explor., vol. 115, pp. 24–35, 2012.
[27] M. Yousefi and E. J. M. Carranza, “Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping,” Comput. Geosci., vol. 74, pp. 97–109, 2015.
[28] M. Yousefi, E. J. M. Carranza, and A. Kamkar-Rouhani, “Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping,” J. Geochemical Explor., vol. 128, pp. 88–96, 2013.
[29] M. Yousefi and E. J. M. Carranza, “Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration,” Nat. Resour. Res., vol. 25, no. 1, pp. 3–18, 2016.
[30] M. J. Mihalasky and G. F. Bonham-Carter, “Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada,” Nat. Resour. Res., vol. 10, no. 3, pp. 209–226, 2001.
[31] M. Yousefi and J. M. A. Hronsky, “Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting,” Appl. Geochemistry, vol. 149, no. January, p. 105561, 2023.
[32] G. Last and M. Holtmann, “1 Introduction 2 Some general facts.”
[33] S. J. Yousefia, H. Ranjbar, S. Alirezaeics, S. Dargahid, and D. R. Lentze, “Comparison of Hydrothermal Alteration Patterns Associated with Porphyry Cu Deposits hosted by Granitoids and Intermediate-mafic Volcanic rocks, Kerman Magmatic Arc, Iran: application of geological, mineralogical and remote sensing data,” J. African Earth Sci., vol. 142, pp. 112–123, 2018.
[34] M. D. Dimitrijevic and I. Djokovic, Geological Map of Kerman Region. Institute for geological and mining exploration and investigation of nuclear and other mineral raw materials, 1973.We thank professor Maysam Abedi for his guidance and help in keeping our development on track, and professor Alok Porwal for comments that greatly improved the manuscript.