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A B S T R A C T 

 

The Mineral Prospectivity Map (MPM) is a powerful tool for identifying target areas for the exploration of undiscovered mineral deposits. In 
this study, a knowledge-driven Index overlay technique was utilized to create the MPM on a regional scale. The complex distribution patterns 
of geological features associated with mineral deposits were mapped and correlations between these features and mineral deposits were 
revealed by integrating geological, geophysical, hydrothermal alteration, and fault density data layers. It was found that 23% of the study area 
was highly prospective, with 77% of the known porphyry copper occurrences located within this area. The normalized density was equal to 
3.35, indicating a significant relationship between the known porphyry copper occurrences and their occupied area. The MPM also identified 
potential tracts outside the known mineralized areas that can be used for exploration and quantitative assessment of undiscovered resources. 
It is suggested that the MPM is a valuable tool for mineral exploration and could have significant implications for the mining industry. 
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1. Introduction 

The Mineral Prospectivity Map (MPM) is a multi-criteria decision-
making task aimed at identifying target areas for exploring undiscovered 
mineral deposits of a specific type [1], [2]. This task is challenging 
because mineral deposits result from complex interactions of deposit-
forming processes that manifest in various geological features. These 
features lead to nonlinear correlations between mineral occurrences and 
geological characteristics, making them difficult to analyze using 
traditional approaches primarily based on empirical judgment [3]. 

In the field of integration, significant studies have been conducted on 
regional and local scales within the Kerman belt. Abedi et al. examined 
the performance of the ELECTRE III multi-criteria knowledge-driven 
decision-making method in creating a mineral potential map for the 
Nouchun mine in the Kerman belt [4], [5]. They also proposed a 
knowledge-based method using witness belief functions and applied the 
Dempster-Shafer combination law to create a mineral potential map for 
the Saridune deposit. Additionally, they explored other methods such as 
index overlay techniques and fuzzy logic, comparing them with the 
introduced method [6]. 

Shabankareh and Hezarkhani introduced the support vector 
classification method to integrate exploration data on a regional scale 
for creating a copper prospecting map in the Kerman copper belt [7]. 
Ghasemzadeh et al. evaluated and compared U-statistics and fractal 
models to identify geochemical anomalies and their distribution 
patterns in the Baft area, located within the Kerman belt. They 
introduced a mineral prospecting model by integrating the geochemical 
layer and the geological layer on a regional scale to target exploration in 
the study area [8]. 

Rahimi et al. conducted a study analyzing the impact of utilizing  

 
 
 
 

different numbers of non-deposit locations compared to a consistent 
number of well-known deposit locations on the effectiveness of 
exploration targeting models. This study centered on the Chahargonbad 
geological map in the Kerman belt [9]. Bonham-Carter (1994) 
introduced the Index Overlay method for knowledge-driven MPM, in 
which both the weights of evidential maps and the values of classes in 
each evidential map are determined by expert opinions and weighted 
accordingly [10]. 

The main aim of this paper is to identify the best target areas by 
combining four evidential data layers: the geological map, geophysical 
map, structural map, and hydrothermal alteration map, using the Index 
Overlay method. During this process, weights are assigned to each 
evidential map based on expert opinions, and the resulting weighted 
map is utilized as an input for integration. Additionally, the weight of 
the Modified Predictive Map (MPM) is determined through the 
prediction-area (P-A) plot. As a result, the study area is narrowed down, 
reducing the risk associated with exploration operations. By following 
these detailed steps, permissive areas can be identified with greater 
certainty, allowing focused exploration efforts to be directed toward 
them. 

2. Study Area: The Kerman Belt 

The Kerman Cenozoic Magmatic Arc (KCMA), also known as the 
Kerman Belt, is situated in the southeastern part of the Urumieh-
Dokhtar Magmatic Belt (UDMB). It is widely regarded as the most 
promising geological province for porphyry copper deposits in Iran, as 
depicted in Figure 1 (Aghazadeh et al., 2015). Porphyry copper 
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mineralization occurs within Oligocene-Miocene intrusive bodies 
within the UDMB. The Kerman Belt, spanning 40 to 50 km in width, 
follows a northwest-southeast trend within the UDMB, stretching for a 
length of 400 km and bordered by significant strike-slip faults. The 
northern margin of the Kerman Belt is delineated by the Rafsanjan and 
Sarvestan faults, while its southern margin is defined by the Nain-Baft 
and Sarbizan faults. The emplacement of porphyry and porphyry copper 
deposits in the UDMB can be attributed to Tertiary-related tectonic 
processes and the closure of the Neo-Tethys Ocean, as observed in 
previous studies (Agard et al., 2005; McInnes et al., 2005; Richards et al., 
2012; Shafiei et al., 2009). 

The Kerman Belt can be characterized by two primary phases of 
intrusions: an Eocene-Oligocene phase known as "Jebal Barez" and a 
mid-late Miocene dioritic to granodioritic phase called "Kuh Panj." Jebal 
Barez is situated in the southeast and center of KCMA and is composed 
of composite gabbroic to granitic intrusive rocks and their volcanic 
counterparts. Meanwhile, Kuh Panj, located in the northwest and center 
of KCMA, consists of porphyritic-textured granodioritic intrusive rocks 
and Miocene dioritic formations (Shafiei et al., 2009). 

The Kuh Panj region harbors a significant number of porphyry 
copper deposits, whereas the deposits in Jebal Barez are limited in 
number (Aghazadeh et al., 2015). 

 

 
Figure 1. (a) discrete geological map (b) discrete map of weighted rock units. 

3. Data and Methods 

3.1. Data 

3.1.1. Porphyry copper deposits 

The study utilized mineral deposit data primarily compiled from the 
exploratory report by the United States Geological Survey (USGS) [11]. 
The locations of major deposits were further reviewed and refined by 
considering satellite-based images and internal reports from the 
National Iranian Copper Industries Company. All mineral deposits were 
represented as point features with the coordinates of their centroids. 
The study included a total of 70 deposit points, consisting of 17 mines 
and 53 occurrences/prospects. 

3.1.2. Evidence data layers 

Based on the conceptual model of prospectivity for porphyry copper 
deposits and the available data, this study employed four evidence layers 
to generate a mineral prospectivity map (MPM). These evidence layers 
include the geological map, geophysical map, structural map, and 
hydrothermal alteration map. The selection of these layers was guided 
by the conceptual model of porphyry copper deposit prospectivity. 

To generate the MPM, the spatial evidence values of the four maps 
were transformed into a range of [0, 1] using a logistic function. It is 
important to mention that the cell dimension for all maps utilized in this 
study was set to 30 m x 30 m. 

By integrating the evidence layers and applying the transformation, 
the resulting MPM offers a comprehensive perspective on areas that 
potentially harbor porphyry copper deposits. The incorporation of 
multiple evidence layers overcomes limitations tied to individual data 
sources and ensures a more precise depiction of prospectivity. 

The integration of these evidence layers and the transformation 
method employed in this study establishes a reliable framework for 
pinpointing potential areas for porphyry copper deposits. The resultant 
MPM proves to be a valuable instrument for mineral exploration and 
resource assessment in the study area. 

Geological map 

Geological maps serve as essential tools for identifying permissive 
tracts for various types of deposits. Descriptive models of these deposits 
help in pinpointing the tectonic structures and geological environments 
contributing to each type. Accurate recognition of geological structures 
associated with specific deposits requires the use of high-resolution 
geological maps and expert knowledge. Ideally, the most appropriate 
map for identifying permissive tracts should align with the scale of the 
final evaluation map. In this context, the primary purpose of the 
evidence layer is to extract geological units linked to porphyry copper 
deposits. 

To achieve this goal, the study utilized geological maps at a scale of 
1:250,000 generated by the Geological Survey and Mineral Exploration 
of Iran. These maps played a crucial role in identifying rock units 
associated with porphyry copper deposits. Specifically, eight maps were 
examined, namely Yazd, Anar, Rafsanjan, Neyriz, Sirjan, Bam, Hajiabad, 
and Sabzevaran. The boundaries of these maps were assimilated, and 
their corresponding rock units were integrated to establish a 
comprehensive understanding of the region's geology. 

The next step in this investigation involved simplifying the maps and 
dividing the geological formations into three units: Miocene-Oligocene 
intrusive bodies related to porphyry copper mineralization in the 
Kerman belt, volcanic rock, and other units. The resulting information 
can be used to identify areas that are potentially permissive for porphyry 
copper deposits. 

It is worth noting that correctly identifying geological structures 
associated with different types of deposits requires a high-resolution 
geological map and specialized knowledge. Therefore, it is crucial to use 
the most appropriate map corresponding to the scale of the final 
evaluation map. Descriptive models of deposits are also critical in 
identifying tectonic structures and geological environments associated 
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with each type of deposit. In essence, geological maps serve as a 
fundamental source of information for identifying and determining 
permissive tracts for various types of deposits. 

Geophysical map 

Geophysical methods are essential for identifying and delineating 
potential mineral deposit targets. While direct detection of targets may 
be possible in small study areas or where alteration zones are clearly 
evident, this is not typically the case for exploration at larger scales. 
Geophysical surveys, such as airborne magnetics, are often used to 
identify hidden permissive rock units covered by younger sediments, 
thus providing crucial information on the primary boundaries of 
exploration areas. 

Geological maps serve as the primary source of information for 
delineating target areas but often lack details on overlying rock units, 
making geophysics a valuable tool for determining the lateral and 
vertical extent of geological units. Geophysical mapping can also assist 
in identifying permissive geologic environments for specific mineral 
deposits, including crustal structures, major margins, plutons, and 
hidden calderas. Additionally, geophysical maps provide crucial 
information on magnetic rocks associated with certain mineral deposits. 

In this paper, airborne magnetic data (reduced to pole) is utilized to 
investigate the magnetic anomalies of a region as an input layer for the 
integration process (Figure 2). It is worth noting that geophysical maps 
not only assist in identifying anomalies and shallow bodies but also 
differentiate regional structures and lineaments, thereby significantly 
contributing to the understanding of the geologic context of mineral 
deposits. 

 

 
Figure 2. Map of geophysical anomalies with normalized continuous value 

 

Hydrothermal alteration map 

Porphyry copper deposits are commonly associated with 
hydrothermal alteration zoning that includes potassic, phyllic, and 
propylitic alteration from the center outward [12]. The presence and 
extent of alteration are often indicators of the scale and intensity of ore 
enrichment. It is well-established that the ore body is typically located 
in the quartz-phyllic or potassic alteration zone, with larger deposits 
exhibiting stronger alteration and richer mineralization [12], [13]. In 
this study, the ASTER sensor data and the spectral angle mapper (SAM) 
method were used to identify hydrothermal alteration minerals and 
highlight alteration zones (Figure 3). The SAM method is a rapid 
classification technique that compares the spectral similarity between 

the image spectrum and a reference reflectance spectrum [14]. 
The similarity is calculated based on the angle between two spectra, 

which are represented as vectors in an n-dimensional space, where n is 
the number of spectral bands. The reference spectrum can be obtained 
from field and laboratory measurements or directly from satellite 
images. The SAM method calculates the spectral similarity by 
computing the angle between two spectra, with a small angle indicating 
high similarity and a large angle indicating low similarity. The angle 
measurement ranges from zero to one [15]. 

 

 
Figure 3. (a) discrete map of hydrothermal alteration and (b) discrete map of 
weighted hydrothermal alteration. 

 

Fault and structures map 

The correlation between faulting, fluid flow, and deposit formation 
processes is well-established [16]–[18]. Structural analysis conducted on 
primary copper deposit belts worldwide indicates that the positioning 
of intrusive masses and associated copper deposits is influenced by the 
transpression process [19]–[21]. In this specific tectonic context, dextral 
strike-slip faults create suitable structural basins, such as duplex faults, 
for the placement of porphyry copper deposits. To identify linear 
structures, this study uses two layers of information. The first layer 
involves identifying faults depicted on the geological map at a scale of 
1:250,000. The second layer involves applying reduction-to-pole and 
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analytic signal filters to airborne geophysical data to identify potential 
linear structures concealed at greater depths below the Earth's surface 
(figure 4). 

 

 
Figure 4. (a) fault density map and (b) normalized continuous fault density map. 

 

3.2. Methods 

Multi-class index overlay 

Multi-class index overlay is a method utilized to create knowledge-
based mineral potential maps. This method involves discretizing 
evidence maps into arbitrary classes and integrating them by assigning 
subjective weights to each evidence map. A score Sij is assigned to each 
of the jth classes from the ith evidence map according to their relative 
importance. The relative importance of an evidence map compared to 
any other evidence map is controlled by the assigned weights Wi. The 
weighted evidence maps are then combined using the following 
equation, calculating a (𝐼𝑂̅̅ ̅) score for each pixel [10]: 

 

𝐼𝑂 =
∑ 𝑆𝑖𝑗𝑊𝑖

𝑛
𝑖

∑ 𝑊𝑖
𝑛
𝑖

                                                                                               (1) 

Which for the present study is defined as: 
 

𝐼𝑂 =
𝑆𝑔𝑒𝑜𝑊𝑔𝑒𝑜+𝑆𝑔𝑝ℎ𝑊𝑔𝑝ℎ+𝑆𝑟𝑠𝑊𝑟𝑠+𝑆𝑓𝑑𝑊𝑓𝑑

𝑊𝑔𝑒𝑜+𝑊𝑔𝑝ℎ+𝑊𝑟𝑠+𝑊𝑓𝑑
                        (2) 

 

Where Wgeo, Wgph, Wrs and Wfd are respectively the weights of 
geological, geophysical, remote sensing (hydrothermal alteration) and 
fault density maps, which are determined based on expert opinion. Also, 
Sgeo, Sgph, Srs, and Sfd are the transformed values of each pixel, which are 
determined in layers with continuous values by logistic functions and in 
discrete layers by experts. 

4. Result 

4.1. Integration of evidence map 

In the context of Mineral Potential Mapping (MPM), weighted 
evidence maps are combined through mathematical fusion functions 
that delineate the relative importance of each evidence map [10], [22]–
[25]. In this study, evidence maps were transformed into the [0,1] range 
utilizing a logistic function [26], [27], and the weights of the evidence 
maps were determined through a knowledge-driven method involving 
expert opinions. To identify target areas, mathematical fusion functions 
were applied, taking into account both sets of weights mentioned earlier. 
Specifically, the index overlay model proposed by Bonham-Carter was 
utilized to integrate the evidence layers [10]. 

In this research, two different types of data layers are dealt with. The 
first category comprises evidence maps with continuous quantitative 
values, and the second category consists of maps with discrete 
qualitative values. Geophysical and fault density layers are continuous, 
whereas geological and alteration layers contain qualitative information, 
requiring the assignment of numeric values to each pixel. Based on the 
significance of rock units in the geological map and the indicator 
minerals resulting from alteration in porphyry copper deposits, each of 
these layers is classified, and the classes are valued based on their relative 
importance using a knowledge-based method (see Table 1). 

In contrast to the geological and alteration maps, the geophysical and 
fault density maps contained continuous quantitative values ranging 
from 0 to 1, and did not require a knowledge-based method for assigning 
values to each pixel. 

It is essential to note that in this study, the weights of the evidence 
maps were determined using a knowledge-driven method reliant on 
expert opinions (refer to Table 2). 

 
Table 1. Valuation of qualitative data layers by knowledge-driven methods. 

Data layer Class Value (Weight) 

Geology map 

Intrusive rock (Miocene- Oligocene) 1 

Volcanic rock 0.7 

Other 0.1 

Alteration map 

Muscovite 1 

Kaolinite  0.8 

Illite 0.5 

Alunite  0.5 

Chlorite and Epidote 0.3 

 
Table 2. Relative valuation of evidence maps by knowledge-driven method. 

Evidence map Weight 
Geology map 0.95 
Alteration map 0.93 
Geophysic map 0.9 
Fault density map 0.5 

 
After preprocessing each evidence layer, the input data layers 

underwent processing to generate the mineral prospectivity map of 
porphyry deposits within the metallogenic belt of Kerman, as depicted 
in Figure 5. Because all the evidence maps consist of pixel values ranging 
from 0 to 1, the resulting mineral prospectivity map is also a continuous 
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map with pixel values within the same range. It is apparent that pixels 
with higher values or scores (approaching 1) hold greater significance 
and are more likely to encompass porphyry copper deposits. 

 

 
Figure 5. The map of index overlay potential scores produced by combining the 
discrete map of weighted rock units, the continuous map of normalized 
geophysical anomalies, the discrete map of weighted hydrothermal alteration and 
normalized continuous fault density map. 

4.2. Evaluation of the prospectivity map 

The most effective method for evaluating the validity and accuracy of 
the generated model and its target areas is through field observations. 
Nevertheless, the model's accuracy can also be confirmed by considering 
the locations of known porphyry copper deposits. In particular, the 
correlation between established mineral deposits and various categories 
within the prospectivity map can be analyzed by superimposing deposit 
locations onto a discrete model [23]–[26], [28]. This assessment can be 
conducted using a prediction-area (P-A) plot. By comparing the MPM 
weight with the weight of the evidence layers, the integration map can 
be validated. 

4.3. Prediction-area (P-A) plot 

Mihalasky and Bonham-Carter employed a normalized density 
approach to assign weights to layers. Normalized density is calculated 
by dividing the prediction rate of each class by the corresponding 
occupied area relative to the entire studied area. The intersection point 
in the P-A diagram is utilized to determine the parameters required for 
calculating normalized density. Hence, the formula for calculating 
normalized density for weighting MPM is as follows [30]: 

 

𝑁𝑑 =
𝑃𝑟

𝑂𝑎
   

 

Where Nd is the normalized density, Pr and Oa are the prediction rate 
and the included area, respectively. These values are derived from the 
intersection point of the two curves in the P-A plot. Consequently, the 
weight assigned to the layer is: 

  

𝑊𝐸 = 𝐿𝑛 𝑁𝑑      
 

The fractal method (C-A) has been used to discretize and determine 
the class in the MPM Figure 6. 

The intersection point on the P-A plot holds significance in evaluating 
the validity of the MPM model. In this instance, the intersection point 
reveals that the MPM model predicts 23% of the study area as having 
high potential, with 77% of the established porphyry copper occurrences 

situated within this region (refer to Fig. 7). This implies that the 
normalized density, calculated as the prediction rate of each class 
divided by the corresponding occupied area in relation to the entire 
study area, equals 3.35 (77/23). A normalized density surpassing 1 
signifies a strong predictive capacity for potential mineral areas. 
Consequently, the MPM map bears a weight of 1.21 (Ln 3.35), signifying 
a substantial correlation between the known porphyry copper 
occurrences and their spatial extent. This outcome corroborates the 
validity and precision of the MPM model, indicating that the zones 
identified by the index overlay prospectivity map can serve as promising 
targets for further exploration efforts. 

 

 
Figure 6. (a) (C-A) plot for multi-index overlay prospectivity values and (b) 
discrete index overlay prospectivity map. 

 

 
 

Figure 7. Prediction-area (P-A) plot for the discrete index overlay prospectivity 
map. 
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Additionally, the intersection point of the two curves on the 
horizontal axis of the P-A plot provides a threshold value for 
distinguishing areas with high-potential probability from those with 
lower potential. Thus, as depicted in Figure 8, any pixel with a value 
above 33 is considered a potential target area for further exploration. 

 

 
Figure 8. The target areas determined by the P-A plot. 

5. Discussion 

Porphyry copper deposits are typically discovered through surface 
outcrops and evidence. However, without a thorough understanding of 
subsurface processes, identifying covered target areas becomes 
impossible. The index overlay model adopts a knowledge-driven 
approach, assigning weights to evidence layers based on their relative 
importance and effectiveness in the formation process of porphyry 
copper deposits. 

Through the use of a data-driven method and the P-A plot, the 
determination of the weight for the mineral prospectivity map and the 
evaluation of the prospectivity model have been achieved. The weight 
of evidence maps for the geological map, alteration map, geophysical 
map, and fault density map are 0.95, 0.93, 0.90, and 0.5, respectively. 
Meanwhile, the weight of the integrated map is 1.21 (normalized density 
3.35). According to the theory of Mihalasky and Bonham-Carter, 
evidence layers and prospectivity models with a normalized density 
higher than 1 are considered suitable predictors. 

The prospectivity map generated has been compared with previous 
exploration activities and the locations of known deposits. The Mineral 
Prospectivity Map (MPM) has predicted approximately 77% of the 
known occurrences and has also identified potential tracts beyond the 
known mineralized areas. These areas can be used for exploration and 
quantitative assessment of undiscovered resources. 

The integration of data-driven and knowledge-driven approaches can 
yield more reliable results, depending on the type of data and the depth 
of understanding in the case study. Some areas identified as target zones 
in the prospectivity map of the Kerman belt might lack discovered 
deposits due to limited exploration efforts or complete lack thereof. 
These areas are the focus of this research, where a potential map is being 
prepared. Many surface deposits show no clear signs of mineralization 
because the intrusive bodies associated with mineralization are located 
beneath the surface or are covered by young sediments. While a 
geological map is essential for preparing a prospectivity map, it is not 
sufficient. Therefore, the incorporation of data layers, such as 
geophysical anomalies, including subsurface information, is strongly 
required. 

In contrast to the other evidence layer, the weight of fault density 
suggests that a robust correlation between the location of porphyry 
copper deposits and fault density in the study area does not exist. This 
finding may imply a limited hydrological connection to the extensive 
vertical pathways for fluids originating from the lower crust. 
Consequently, it is recommended to utilize a novel geological point 
feature, specifically the intersection of faults and intrusive bodies, to 
effectively map the upward flow of fluids [31]. 

The target areas containing a higher number of porphyry copper 
occurrences are predominantly situated in the northwestern part of the 
Kerman belt (Sarduieh–Dahaj sector), whereas areas with fewer 
porphyry copper occurrences are mainly found in the southeastern part 
of the Kerman belt (Jebal-e-Barez sector). As illustrated in Fig. 8, the 
Jebal-e-Barez sector exhibits airborne geophysical anomalies, yet a 
significant number of discovered deposits in this sector remain 
unlocated. This phenomenon could be attributed to the presence of 
Oligocene granitoids' intrusive bodies at greater depths in the 
southeastern sector of the Kerman belt. These bodies are concealed by 
the Jebal-e-Barez mountain range in most areas and remain largely 
unexplored geologically [32], [33]. 

The limited number of discovered deposits in the southeastern part 
of Kerman does not necessarily indicate barren intrusive bodies in this 
sector; rather, it could be a consequence of insufficient exploration. The 
target areas in the northwest of the Kerman belt (Sarduieh–Dahaj 
sector) are comparatively smaller than their counterparts in the 
southeast (Jebal-e-Barez sector). Consistent with earlier geological 
studies by Dimitrijevic and Djokovic, the southern part of the Kerman 
belt comprises large granitoid bodies [34]. These bodies are situated 
deeper beneath the surface in comparison to the shallow granodiorite 
porphyries found in the northern part of Kerman. 

6. Conclusions 

This study aimed to recognize and analyze the favorable areas for 
further porphyry copper exploration in the Kerman Belt using the Index 
Overlay integration method. Based on the results of these analyses, the 
following conclusions were drawn. 
(1) Integrating data-driven and knowledge-driven approaches can lead 

to more reliable results, depending on the type of data and the level 
of knowledge of the specific case study. 

(2) The index overlay prospectivity map indicates that 23% of the study 
area has potential, with 77% of known porphyry copper occurrences 
located within this area. 

(3) The granitoid bodies in the southern part of the Kerman belt are 
located at greater depths compared to the shallow granodiorite 
porphyries found in the northern part of Kerman. 

(4) The MPM demonstrates high efficiency in identifying potential 
tracts outside of known mineralized areas, making it a valuable tool 
for exploration and quantitative assessment of undiscovered 
resources. 
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