[1] Bonham-Carter, G. F. and Bonham-Carter, G. (1994). Geographic information systems for geoscientists: modelling with GIS (No. 13). Elsevier.
[2] Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[3] Bonham-Carter, G. F. (1989). Weights of evidence modeling: a new approach to mapping mineral potential. Statistical applications in the earth sciences, 171-183.
[4] Agterberg, F. P., Bonham-Carter, G. F. and Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In Computer applications in resource estimation (pp. 1-21). Pergamon. doi: https://doi.org/10.1016/B978-0-08-037245-7.50006-8
[5] Cheng, Q. and Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural resources research, 8(1), 27-35. doi: https://doi.org/10.1023/A:1021677510649
[6] Pan, G. and Harris, D. P. (2000). Information synthesis for mineral exploration. Oxford University Press.
[7] Carranza, E. J. M. (2002). Geologically-Constrained Mineral Potential Mapping: Example from the Philippines. International Institute of Aerospace Survey and Earth Science (ITC) (Doctoral dissertation, PhD Thesis. 88: 1-474).
[8] Carranza, E. J. M. and Hale, M. (2003). Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(2), 117-132. doi: https://doi.org/10.1016/S0169-1368(02)00111-7
[9] Porwal, A. K. (2006). Mineral potential mapping with mathematical geological models, Ph.D thesis. (Vol. 130). Utrecht University (Doctoral dissertation, PhD Thesis).
[10] Harris, J. R. and Sanborn-Barrie, M. (2006). Mineral potential mapping: examples from the Red Lake greenstone belt, northwest Ontario. GIS for the Earth Sciences, 44, 1-21.
[11] Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17(1), 29-48. doi: https://doi.org/10.1007/s11053-008-9062-0
[12] Boleneus, D. E., Raines, G. L., Causey, J. D., Bookstrom, A. A., Frost, T. P. and Hyndman, P. C. (2001). Assessment method for epithermal gold deposits in northeast Washington State using weights-of-evidence GIS modeling (No. 2001-501). doi: https://doi.org/10.3133/ofr01501
[13] Good, I. J. (1950). Probability and the Weighing of Evidence, London, Charles Griffin.
[14] Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13(3), 173-187. doi:
https://doi.org/10.1023/B:NARR.0000046919.87758.f5
[15] Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin Societe Vaudoise des Sciences Naturelles, 44, 223-270.
[16] Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75(6), 579-652. doi: https://doi.org/10.2307/2340126
[17] Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 370-418. doi: https://doi.org/10.1098/rstl.1763.0053
[18] Bonham-Carter, G. F. and Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Journal of the International Association for Mathematical Geology, 15(1), 25-45. doi: https://doi.org/10.1007/BF01030074
[19] Chung, C. F. and Agterberg, F. P. (1988). Poisson regression analysis and its application. In Quantitative analysis of mineral and energy resources (pp. 29-36). Springer, Dordrecht. doi: https://doi.org/10.1007/978-94-009-4029-1_2
[20] Harris, D. and Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8(2), 93-109. doi: https://doi.org/10.1023/A:1021886501912
[21] Daneshfar, B., Desrochers, A. and Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with Limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15(3), 129-149. doi: https://doi.org/10.1007/s11053-006-9020-7
[22] Chung, C. F. (1977). An application of discriminant analysis for the evaluation of mineral potential. In Application of computer methods in the mineral industry, Proceedings of the 14th APCOM Symposium, 1977 (pp. 299-311). Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers.
[23] Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T. and Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: application of GIS technology. Canadian Journal of Earth Sciences, 43(7), 865-893. doi: https://doi.org/10.1139/e06-020
[24] Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian journal of earth sciences, 47(4), 757-770. https://doi.org/10.1046/j.1440-0952.2000.00807.x
[25] Oh, H. J. and Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19(2), 103-124. doi: 10.1007/s11053-010-9112-2.
[26] Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., Elyasi, G.R., 2021. Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940. https://doi.org/10.1016/j.apgeochem.2021.104940.
[27] Yousefi, M., Hronsky, J.M.A., 2023. Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561. https://doi.org/10.1016/j.apgeochem.2023.105561
[28] Yousefi, M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., 2019. Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Geology Reviews, 111, 103005. https://doi.org/10.1016/j.oregeorev.2019.103005
[29] Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M., Mihalasky, M. J., 2021. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839. https://doi.org/10.1016/
j.gexplo.2021.106839
[30] Vahdatidaneshmand, F. & Saidi, A. (1991). 1:250000 scale geological quadrangle map of the sari, geological survey of Iran (in Persian).
[31] Aghanabati, A. and Hamidi, A. R. (1994). 1:250000 scale geological quadrangle map of the Semnan. geological survey of Iran (in Persian).
[32] Ghazban, F. & Moritz, R., (2001). Nature of carbonate-hosted F-BA-Pb deposits in central Alborz Iran: Genetic relationships, XVIECROFI European current research on fluid inclusion, Porto.
[33] Vahabzadeh, Gh., 2008. Mineralogy and geochemistry of Fluorite mineralization in eastern district of central Alborz, Savadkooh area, Iran, Shahidbeheshti University (Doctoral dissertation, PhD Thesis. in Persian).
[34] Abedi, M., Mostafavi Kashani, S. B., Gholam-Hossain Norouzi, G.H., Yousefi, M., (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146. https://doi.org/10.1016/j.jafrearsci.2016.09.028
[35] Kreuzer, O.P., Yousefi, M., Nykänen, V., 2020. Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391. https://doi.org/10.1016/
j.oregeorev.2020.103391
[36] Yousefi, M., Carranza, E.J.M., 2017. Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47-60. https://doi.org/10.1016/
j.jafrearsci.2016.04.019
[37] MamiKhalifani, F., Bahroudi, A., Aliyari, F., Abedi, M., Yousefi, M., Mohammadpour, M. 2019. Generation of an efficient structural evidence layer for mineral exploration targeting. Journal of African Earth Sciences, 160, 103609. https://doi.org/10.1016/j.jafrearsci.2019.103609
[38] Yousefi, M., Nykänen, V., 2016. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94-106. https://doi.org/10.1016/
j.gexplo.2015.10.008
[39] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J., (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geology Reviews, 113: 103115. https://doi.org/10.1016/
j.oregeorev.2019.103115
[40] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J., (2022a). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity, Journal of Geochemical Exploration, 235, 106967. https://doi.org/10.1016/j.gexplo.2022.106967
[41] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M.J., (2022b). Information value based geochemical anomaly modeling: a statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177. https://doi.org/10.1016/
j.apgeochem.2021.105177
[42] Zimmermann-Tansella, C., Donini, S., Lattanzi, M., Siciliani, O., Turrina, C., & Wilkinson, G. (1991). Life events, social problems and physical health status as predictors of emotional distress in men and women in a community setting. Psychological Medicine, 21(2), 505-513. https://doi.org/10.1017/
S0033291700020614.
[43] Yousefi, M., Carranza, E. J. M., 2016. Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18. https://doi.org/10.1007/s11053-014-9261-9.
[44] Billa, M., Cassard, D., Lips, A. L., Bouchot, V., Tourlière, B., Stein, G. and Guillou-Frottier, L. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews, 25(1-2), 39-67. doi:
https://doi.org/10.1016/j.oregeorev..2004.01.002
[45] Chica-Olmo, M., Abarca, F. and Rigol, J. P. (2002). Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain. International Journal of Remote Sensing, 23(22), 4801-4814. doi: https://doi.org/10.1080/01431160110104656
[46] De Araújo, C. C. and Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11(1), 29-43. doi: https://doi.org/10.1023/A:1014235703541.
[47] D'ercole, C., Groves, D. I. and Knox-Robinson, C. M. (2000). Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi Valley-type mineralization. Australian Journal of Earth Sciences, 47(5), 913-927. doi: https://doi.org/10.1046/j.1440-0952.2000.00821.x.
[48] Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47(5), 929-941. doi:
https://doi.org/10.1046/j.1440-0952.2000.00816.x
[49] Carranza, E. J. M. and Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125-136. doi: https://doi.org/10.1023/A:1011500826411
[50] Porwal, A., Carranza, E. J. M. and Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1-25. doi: https://doi.org/10.1023/A:1022693220894.
[51] Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P. and Gardoll, S. J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 25-38. doi: https://doi.org/10.1080/08120090701581372.