Recognition coefficient of spatial geological features, an approach to facilitate criteria weighting for mineral exploration targeting

Document Type : Research Paper

Authors

1 Faculty of Engineering, Malayer University, Malayer, Iran.

2 Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

3 School of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran

10.22059/ijmge.2023.355380.595037

Abstract

The different methods for delineating favorable areas for mineral exploration utilize exploration criteria regarding targeted mineral deposits. The criteria are elicited according to conceptual model parameters of the targeted mineral deposits. The selection of indicator criteria, the evaluation of their comparative importance, and their integration are critical in mineral prospectivity modelling. In data-driven methods, indicator features are weighted using functions whereby the importance of certain indicator criteria may be ignored. In this paper, a data-driven method is described for recognizing and converting exploration criteria into quantitative coefficients representing favorability for the presence of the targeted mineral deposits. In this approach, all indicator features of the targeted mineral deposits are recognized and incorporated in the modelling procedure. The method is demonstrated for outlining favorable areas for a Mississippi valley-type fluorite deposit in an area, north of Iran. The method is developed by studying and modelling the geological characteristics of known mineral occurrences. The degree of prediction ability of each exploration criterion is quantified as a recognition coefficient, which can be used as a weight attributed to the criterion in mineral exploration targeting to outline favorable areas.

Keywords

Main Subjects


[1] Bonham-Carter, G. F. and Bonham-Carter, G. (1994). Geographic information systems for geoscientists: modelling with GIS (No. 13). Elsevier.
[2] Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[3] Bonham-Carter, G. F. (1989). Weights of evidence modeling: a new approach to mapping mineral potential. Statistical applications in the earth sciences, 171-183.
[4] Agterberg, F. P., Bonham-Carter, G. F. and Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In Computer applications in resource estimation (pp. 1-21). Pergamon. doi: https://doi.org/10.1016/B978-0-08-037245-7.50006-8
[5] Cheng, Q. and Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural resources research, 8(1), 27-35. doi: https://doi.org/10.1023/A:1021677510649
[6] Pan, G. and Harris, D. P. (2000). Information synthesis for mineral exploration. Oxford University Press.
[7] Carranza, E. J. M. (2002). Geologically-Constrained Mineral Potential Mapping: Example from the Philippines. International Institute of Aerospace Survey and Earth Science (ITC) (Doctoral dissertation, PhD Thesis. 88: 1-474).
[8] Carranza, E. J. M. and Hale, M. (2003). Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(2), 117-132. doi: https://doi.org/10.1016/S0169-1368(02)00111-7
[9] Porwal, A. K. (2006). Mineral potential mapping with mathematical geological models, Ph.D thesis. (Vol. 130). Utrecht University (Doctoral dissertation, PhD Thesis).
[10] Harris, J. R. and Sanborn-Barrie, M. (2006). Mineral potential mapping: examples from the Red Lake greenstone belt, northwest Ontario. GIS for the Earth Sciences, 44, 1-21.
[11] Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17(1), 29-48. doi: https://doi.org/10.1007/s11053-008-9062-0
[12] Boleneus, D. E., Raines, G. L., Causey, J. D., Bookstrom, A. A., Frost, T. P. and Hyndman, P. C. (2001). Assessment method for epithermal gold deposits in northeast Washington State using weights-of-evidence GIS modeling (No. 2001-501). doi: https://doi.org/10.3133/ofr01501
[13] Good, I. J. (1950). Probability and the Weighing of Evidence, London, Charles Griffin.
[14] Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13(3), 173-187. doi: https://doi.org/10.1023/B:NARR.00000
46919.87758.f5
[15] Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin Societe Vaudoise des Sciences Naturelles, 44, 223-270.
[16] Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75(6), 579-652. doi: https://doi.org/10.2307/2340126
[17] Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 370-418. doi: https://doi.org/10.1098/rstl.1763.0053
[18] Bonham-Carter, G. F. and Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Journal of the International Association for Mathematical Geology, 15(1), 25-45. doi: https://doi.org/10.1007/BF01030074
[19] Chung, C. F. and Agterberg, F. P. (1988). Poisson regression analysis and its application. In Quantitative analysis of mineral and energy resources (pp. 29-36). Springer, Dordrecht. doi: https://doi.org/10.1007/978-94-009-4029-1_2
[20] Harris, D. and Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8(2), 93-109. doi: https://doi.org/10.1023/A:1021886501912
[21] Daneshfar, B., Desrochers, A. and Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with Limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15(3), 129-149. doi: https://doi.org/10.1007/s11053-006-9020-7
[22] Chung, C. F. (1977). An application of discriminant analysis for the evaluation of mineral potential. In Application of computer methods in the mineral industry, Proceedings of the 14th APCOM Symposium, 1977 (pp. 299-311). Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers.
[23] Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T. and Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: application of GIS technology. Canadian Journal of Earth Sciences, 43(7), 865-893. doi: https://doi.org/10.1139/e06-020
[24] Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian journal of earth sciences, 47(4), 757-770. https://doi.org/10.1046/j.1440-0952.2000.00807.x
[25] Oh, H. J. and Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19(2), 103-124. doi: 10.1007/s11053-010-9112-2.
[26] Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., Elyasi, G.R., 2021. Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940. https://doi.org/10.1016/j.apgeochem.2021.104940.
[27] Yousefi, M., Hronsky, J.M.A., 2023. Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561. https://doi.org/10.1016/j.apgeochem.2023.105561
[28] Yousefi, M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., 2019. Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Geology Reviews, 111, 103005. https://doi.org/10.1016/j.oregeorev.2019.103005
[29] Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M., Mihalasky, M. J., 2021. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839. https://doi.org/10.1016/
j.gexplo.2021.106839
[30] Vahdatidaneshmand, F. & Saidi, A. (1991). 1:250000 scale geological quadrangle map of the sari, geological survey of Iran (in Persian).
[31] Aghanabati, A. and Hamidi, A. R. (1994). 1:250000 scale geological quadrangle map of the Semnan. geological survey of Iran (in Persian).
[32] Ghazban, F. & Moritz, R., (2001). Nature of carbonate-hosted F-BA-Pb deposits in central Alborz Iran: Genetic relationships, XVIECROFI European current research on fluid inclusion, Porto.
[33] Vahabzadeh, Gh., 2008. Mineralogy and geochemistry of Fluorite mineralization in eastern district of central Alborz, Savadkooh area, Iran, Shahidbeheshti University (Doctoral dissertation, PhD Thesis. in Persian).
[34] Abedi, M., Mostafavi Kashani, S. B., Gholam-Hossain Norouzi, G.H., Yousefi, M., (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146. https://doi.org/10.1016/j.jafrearsci.2016.09.028
[35] Kreuzer, O.P., Yousefi, M., Nykänen, V., 2020. Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391. https://doi.org/10.1016/
j.oregeorev.2020.103391
[36] Yousefi, M., Carranza, E.J.M., 2017. Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47-60. https://doi.org/10.1016/
j.jafrearsci.2016.04.019
[37] MamiKhalifani, F., Bahroudi, A., Aliyari, F., Abedi, M., Yousefi, M., Mohammadpour, M. 2019. Generation of an efficient structural evidence layer for mineral exploration targeting. Journal of African Earth Sciences, 160, 103609. https://doi.org/10.1016/j.jafrearsci.2019.103609
[38] Yousefi, M., Nykänen, V., 2016. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94-106. https://doi.org/10.1016/
j.gexplo.2015.10.008
[39] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J., (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geology Reviews, 113: 103115. https://doi.org/10.1016/
j.oregeorev.2019.103115
[40] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M. J., (2022a). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity, Journal of Geochemical Exploration, 235, 106967. https://doi.org/10.1016/j.gexplo.2022.106967
[41] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., Mihalasky, M.J., (2022b). Information value based geochemical anomaly modeling: a statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177. https://doi.org/10.1016/
j.apgeochem.2021.105177
[42] Zimmermann-Tansella, C., Donini, S., Lattanzi, M., Siciliani, O., Turrina, C., & Wilkinson, G. (1991). Life events, social problems and physical health status as predictors of emotional distress in men and women in a community setting. Psychological Medicine, 21(2), 505-513. https://doi.org/10.1017/
S0033291700020614.
[43] Yousefi, M., Carranza, E. J. M., 2016. Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3-18. https://doi.org/10.1007/s11053-014-9261-9.
[44] Billa, M., Cassard, D., Lips, A. L., Bouchot, V., Tourlière, B., Stein, G. and Guillou-Frottier, L. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews, 25(1-2), 39-67. doi: https://doi.org/10.1016/j.oregeorev.
.2004.01.002
[45] Chica-Olmo, M., Abarca, F. and Rigol, J. P. (2002). Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain. International Journal of Remote Sensing, 23(22), 4801-4814. doi: https://doi.org/10.1080/01431160110104656
[46] De Araújo, C. C. and Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11(1), 29-43. doi: https://doi.org/10.1023/A:1014235703541.
[47] D'ercole, C., Groves, D. I. and Knox-Robinson, C. M. (2000). Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi Valley-type mineralization. Australian Journal of Earth Sciences, 47(5), 913-927. doi: https://doi.org/10.1046/j.1440-0952.2000.00821.x.
[48] Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47(5), 929-941. doi: https://doi.org/10.1046
/j.1440-0952.2000.00816.x
[49] Carranza, E. J. M. and Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125-136. doi: https://doi.org/10.1023/A:1011500826411
[50] Porwal, A., Carranza, E. J. M. and Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1-25. doi: https://doi.org/10.1023/A:1022693220894.
[51] Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P. and Gardoll, S. J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 25-38. doi: https://doi.org/10.1080/08120090701581372.