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A B S T R A C T 

 

The different methods for delineating favorable areas for mineral exploration utilize exploration criteria regarding targeted mineral deposits. 
The criteria are elicited according to conceptual model parameters of the targeted mineral deposits. The selection of indicator criteria, the 
evaluation of their comparative importance, and their integration are critical in mineral prospectivity modelling. In data-driven methods, 
indicator features are weighted using functions whereby the importance of certain indicator criteria may be ignored. In this paper, a data-
driven method is described for recognizing and converting exploration criteria into quantitative coefficients representing favorability for the 
presence of the targeted mineral deposits. In this approach, all indicator features of the targeted mineral deposits are recognized and 
incorporated in the modelling procedure. The method is demonstrated for outlining favorable areas for a Mississippi valley-type fluorite 
deposit in an area, north of Iran. The method is developed by studying and modelling the geological characteristics of known mineral 
occurrences. The degree of prediction ability of each exploration criterion is quantified as a recognition coefficient, which can be used as a 
weight attributed to the criterion in mineral exploration targeting to outline favorable areas. 
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1. Introduction 

In the mineral prospectivity modelling (MPM) for generating 
exploration targets, a set of prospectivity criteria is used, considering the 
type of targeted mineral deposits. The prospectivity criteria are elicited 
based on a conceptual model of the targeted type of mineral deposit. In 
a study area, each prospectivity criterion represents the presence or 
absence of certain features in a corresponding exploration data set that 
would indicate the existence or lack of the targeted deposit. For example, 
lithology is a prospectivity criterion representing the presence or 
absence of favorable host rocks as depicted in geological maps. Hence, 
favorable host rocks are among the indicative features of the mineral-
deposit type sought. One of the most important challenging issues in 
MPM is the recognition of indicative features and the evaluation of the 
relative importance of each of them [1, 2]. Assessment of the relative 
importance of an indicative feature compared to other indicative 
features is usually depicted as a numerical prospectivity weight that is 
assigned to each set of indicative features. 

Assignment of prospectivity weights to indicative features can be 
made in various ways. In the MPM, knowledge- and data-driven 
methods are two general techniques for assigning prospectivity weights 
to indicative features [1, 2]. The weighting of indicative features in data-
driven MPM in a particular area is generally accomplished according to 
the known mineral occurrences (KMOs) in that area. Many examples of 
applications of data-driven methods of MPM exist in the literature (e.g., 
[1-11]). In the cited previous studies, the importance of classes of 
geosciences data, for example a geological map, is defined by the 
quantification of the spatial associations of the KMOs with the  

 
 
 

individual classes of geosciences data. In the data-driven MPM, the 
analysis consists of quantification of the spatial association of the KMOs 
with the evidence features. This analysis produces some statistical values 
or weights that evaluate the spatial association between KMOs and 
indicator features, thus, determining the relative importance of the 
individual classes of geoscience data as predictor of mineral 
prospectivity. Theses weights are a cornerstone for accepting or 
rejecting a feature or class of geoscience data as an indicator or predictor 
[1, 12]. Based on the acceptance and/or rejection (or assigning weights 
comparatively, i.e., neither completely rejecting nor completely 
accepting) of a feature as an indicator, a weighted evidence map is 
generated. Generally, in some of the data-driven MPM methods, for 
example the weight of evidence method [3, 13, 14] and data-driven 
evidential belief functions [7], the weights of spatial evidence are 
allocated in respect of the locations of KMOs through mathematical and 
statistical functions such as those proposed by [15-17]. In these methods, 
two types of weights for each spatial evidence (E) are calculated with 
respect to a certain sought mineral deposit-type (D), namely the weight 
for the presence of E with respect to D and the weight for the absence 
of E with respect to D. In the evaluation of the relative importance of 
the classes of spatial evidence data, there may be some classes having a 
few KMOs; however, these classes are comparatively classified as 
completely non-predictive or less predictive, and given a score equal to 
or less than 0. Hence, in such data-driven methods of weighting 
geological features, the favorability of some indicator features or 
locations is neglected. Such a problem exists in logistic regression (e.g., 
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[6, 7, 18-21]) and discriminant analysis (e.g., [2, 6, 18, 20, 22, 23]) and 
other methods of MPM techniques as well. In these methods, the 
independent variables are modeled as binary evidential maps, in which 
the classes of evidence (i.e., encoded by 0 or 1) have positive or negative 
associations with mineral deposits. In classical artificial neural networks 
(ANN) for MPM (e.g., [6, 9, 10, 11, 24, 25]), all of the input maps are also 
binary; hence, the same problem exists. Moreover, in logistic regression, 
discriminant analysis, and ANN for MPM, several unit cells are defined 
as completely non-favorable, i.e., encoded with 0 value for training but 
this is not a certain/reliable value for those cells, because their locations 
may not have been explored by subsurface exploration yet. The assigned 
value of 0 is based just on surface information (cf. [26]). 

Furthermore, in all of the data-driven weighting methods, the 
presence of E compared to its absence provides stronger evidence of D. 
In this paper, we believe that in such situations there is no need to 
estimate a weight for the absence of E with respect to D, because the 
absence of one spatial evidence (e.g., E1) is equivalent to the presence of 
other spatial evidence/feature (e.g., E2), which may be an indicator. 
Hence, the weight of the presence of E2 can be calculated with respect 
to D. Using this method, all spatial indicator features containing some 
KMOs are given positive weights, depicting relevant degrees of 
prospectivity for the targeted mineral deposit. Hence, negative weights 
are not allocated to certain spatial evidence that contains some KMOs. 

Yousefi and Hronsky (2023) [27] explored a new mappable 
geological feature representing mineral deposits and applied it to MPM. 
This illustrates the importance of using geological features in mineral 
exploration. In this research, the assumption isthat if in a study area, 
there is a mapped geological feature that contains at least one KMO, it 
is considered as an indicator feature in the modelling procedure as an 
indicator feature. Therefore, a question that arises is which method can 
be used for assigning the weight of every indicator feature that contains 
at least one KMO? The main logic behind this question is that if an 
attribute is present in a certain KMO, it has the potential to be an 
indicator of the deposit type sought. Moreover, Bonham-Carter (1994) 
[1] posed two important questions with regard to MPM: (1) what are 
the characteristics of a mineralization type (i.e., special positions), and 
(2) where are these characteristics localized (i.e., spatial positions)? A 
special position, namely the position of each KMO, represents a location 
where some favorable conditions or indicator features of the targeted 
type of mineral deposits exist. The kinds of indicator features can be 
elicited from the characteristics of KMOs of the same type as the 
targeted type of mineral deposits (e.g., [28, 29]). Therefore, each 
attribute of a KMO can be used as a basis for prospecting similar 
locations to answer the second question of Bonham-Carter (1994) [1] 
mentioned above. Several exploration methods (e.g., geological, 
geophysical, geochemical, remote sensing) can be used for prospecting 
mineral deposits. However, this study is focused on the recognition of 
indicator features and converting their importance into quantitative 
coefficients based on geological map information, which includes 
lithostratigraphic units and structural features. For this, we developed a 
new method to contribute and weight all indicator features, that contain 
at least one KMO. By using this method, not only all indicator features 
that contribute to the modelling are considered, but also uncertainty in 
assigning the weights of indicator features is considered; because weight 
is given for each features. In this method, each geological feature that 
contains at least one KMO is classified as an indicator feature. Thus, in 
this paper, an attempt is made to convert recognition criteria (indicator 
features) from a geological map into quantitative coefficients 
representing favorability for the presence of the targeted mineral 
deposits. In the method introduced in this paper, classes (features) of 
each geological or structural map are divided into two subsets, indicator 
and non-indicator features. Then, the indicator features are ranked and 
given weights. The weight, called the recognition coefficient (RC), is 
assigned based on data. The method was developed by studying and 
modelling the geological characteristics of eight known fluorite mining 
areas in an area in the Mazandaran province, north of Iran. In this 
regard, indicator and non-indicator features were first recognized based 
on the geological attributes of KMOs. Then, by calculating the RCs of 
individual indicator features, the relative importance of each of them 

was evaluated. Therefore, some important indicator features, which can 
be used in subsequent exploration stages, were quantitatively weighted. 
In this research, a data-driven weighting approach was developed to 
quantify geological exploration criteria and to create weighted 
geological evidence maps. 

2. Descriptive modelling of fluorite mineralization in the 
study area  

The study area, covering 4379 km2, is located in the south of the 
1:250,000 scale geological map of Sari and in the north of the 1:250,000 
scale geological map of Semnan, eastern region of the Alborz zone north 
of Iran (Figure 1). In this district, some known F-Ba-Pb-Zn deposits 
exist, in which fluorite is the major economic mineral. Due to the mining 
activities on these fluorite deposits, they have also been called fluorite 
mines. In the study area, outcrops of different types of igneous (plutonic 
and volcanic), sedimentary and metamorphic rocks exist [30, 31]. The 
ages of the lithological features vary from the Precambrian to Recent. In 
the eastern district of the Alborz, several fluorite mining areas and a 
number of less significant fluorite, lead and zinc mines exist. Modelling 
of KMOs has demonstrated that the Triassic Elika Formation (dolomitic 
limestone) and the Lower Cretaceous Tizkooh Formation (orbitolina-
bearing limestone) are the main host lithostratigraphic units for fluorite 
mineralization, which is deposited in lens forms in the spaces of faults 
[32, 33]. The fluorite mineralization has been diffused in lens forms into 
fracture zones (related to faults) that are widespread in limestones and 
dolomites of the Elika and Tizkooh Formations [33]. In this research, 
we used the spatial positions of 30 individual outcrops of fluorite 
mineralization in the mining areas to calculate RCs of indicator features. 

 

 
Figure 1. Location of the study area a) in central Alborz zone, north of Iran and b) 
with magnification along with the location of major fluorite mine. 

3. Methods 

3.1. RCs of exploration criteria 

A given type of mineral deposit in a certain study area with a number 
of KMOs, has generally several characteristics, one or more of which 
may be present or absent in a given KMO. That is, not all of the 
characteristics of a certain type of mineral deposit are present in each of 
the KMOs. Therefore, the degrees of presence or absence of the 
attributes of a targeted type of mineral deposit in all of the KMOs are 
not the same. For this reason, every attribute of the deposit type sought 
is an indicator feature, and the locations where the features are present 
can be elicited from geoscience data (e.g., [28, 29, 34, 35]). In this regard, 
if at least one attribute of the targeted type of mineral deposit is present 
in at least one KMO, it is incorporated in the modelling. In this 
approach, the key point is the KMO, and the attributes of the KMOs are 
important. Therefore, first, all of the KMOs in the study area are 
arranged in rows, and then, the presence or absence of each attribute of 
the mineral deposit-type sought is given in columns with a score of 1 or 
0, respectively (Table 1). 

Considering Table 1, the percentage of the presence of each attribute 
in each KMO (denoted as PAij), which is the initial weight of each  
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Table 1. Process of quantifying the characteristics of “k” number of the KMOs for “m” number of attributes in “n” number of evidential maps (e.g., geological map and fault 
map). The presence or absence of an attribute of the targeted mineral deposit in a KMO is, respectively, encoded with 1 and 0, respectively. 

Anm … Aij … A2m … A2j … A22 A21 A1m … A1j … A12
 A11

 KMO 
1 … 0 … 1 … 1 … 1 0 0 … 1 … 0 1 KMO1 
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indicative feature/attribute, is calculated as follows: 
𝑃𝐴𝑖𝑗

=
𝑁1𝐴𝑖𝑗∗100

𝑘
       (1) 

 

where Aij represents the attribute, N1Aij is the sum of values in column 
Aij, and k is the number of KMOs used in the modelling. After 
calculating PAij, to assign attribute weights for modelling the 
prospectivity of the mineral deposit- type sought in the study area, PAij 
is divided by the percentage area of spatial evidence with respect to the 
total area of the region being studied. This is the procedure to obtain the 
RC of an attribute considered as an indicator feature (RCAij). It is 
emphasized that the areal proportion of the indicator feature must be 
considered when calculating the RC with respect to mineral deposit 
occurrences (cf. [3, 7, 13, 15, 16, 17]). The main reason for that can be 
realized in a situation where two different classes of spatial evidence 
with different areal proportions contain an equal number of mineral 
deposits. In this situation, the percentage of deposits in both of the 
spatial features is equal, and thus, one may think that their coefficients 
should be the same. However, the equal coefficients based simply on the 
number of deposits contained are meaningless, because the two classes 
of spatial evidence have different area proportions. In such a situation, 
the class of spatial evidence with a smaller area should intuitively have 
a higher coefficient, because it is “easier” to find undiscovered 
mineralization within a smaller area than within a larger area. Hence, 
the RC of an indicator feature, RCAij, for modelling the prospectivity of 
the targeted mineral deposit is calculated as follows: 

 

𝑅𝐶𝐴𝑖𝑗
=

𝑃𝐴𝑖𝑗

𝑆𝐴𝑖𝑗
       (2) 

 

where PAij is the percentage of KMOs in which Aij is present, and SAij 
is the percentage area occupied by the spatial indicator feature Aij with 
respect to the total study area. 

Equation (3) is a summative function, because an area with higher 
degree of the presence of indicator attributes, and with higher RC value 
with respect to the targeted mineral deposit, has higher prospectivity. By 
using equation (3), KMOs with a higher degree of presence of attributes 
to the sought deposit-type, have a higher influence on MPM, depicted 
as the distribution map of the US. Another reason to use a summative 
function is that, in the method described in this paper, the RC is 
allocated only to indicator features; hence, the simultaneous presence of 
indicator features has a summative effect on prospectivity for the sought 
mineral deposit type. 

3.2. Separation of indicator and non-indicator features 

For prospecting different types of mineral deposits, different kinds of 
exploration methods, for example, geochemical, geophysical, remote 
sensing, and geological methods (e.g., [37-41]) are used to elicit 
corresponding indicator features of mineral deposits. By considering the 
mineral deposit type sought, some exploration methods may not be 
suitable. For instance, because of the nonmetallic nature of fluorite, the 
aeromagnetic geophysical survey is not directly used for prospecting 
fluorite deposits. Thus, in the preliminary stage of fluorite deposit 
exploration, the definition of geological recognition criteria would be 
more important than applying a geophysical method to outline 
favorable areas. 

Here, we used a geological map to recognize the locations where 
indicator features are present for MPM for two reasons. Firstly, the 
purpose of this paper is the conversion of recognition criteria (for 
occurrences of mineral deposits) into quantitative coefficients based on 

geological map information. Secondly, according to the descriptive 
model of fluorite deposits in the study area, host rock lithology and 
structural features are two important exploration criteria for 
prospecting this type of mineralization [33], and the locations where 
these two features exist can be elicited from a geological map. In the 
study area, there are eight important fluorite mining areas (Fig. 2), 
namely Pajimiana, Kamarposht, Era, Emaft, Sarcheleshk, Sheshroodbar, 
Ashchal, and Deraseleh fluorite mines exist, of which Pajimiana is the 
largest. For recognizing the indicator host rock, the presence or absence 
of the host lithostratigraphic units of fluorite mineralization in each 
mining area is recorded in Table 2 following the example in Table 1. 

Considering Table 2, two indicator host lithostratigraphic units, 
namely the Elika and Tizkooh Formations, out of the different 
lithostratigraphic units are depicted by the geological map of the study 
area. Because there is no other lithostratigraphic unit in which at least 
one KMO exists, all the remaining lithostratigraphic units were 
classified as non-indicator features. The indicator lithostratigraphic 
features for modelling prospectivity for Mississippi valley-type (MVT) 
fluorite deposit in the study area are shown in Figure 2. 

 
Table 2. Presence or absence of the host lithostratigraphic units of fluorite 
mineralization in mining areas of the study region. 

Mining area 
Host lithostratigraphic unit 

Elikaa Tizkoohb 

Era 1 0 
Pajimiana 1 0 

Emaft 0 1 
Sarcheleshk 1 0 
Kamarposht 1 0 

Sheshroodbar 1 0 
Ashchal 1 0 

Deraseleh 1 0 
aElika Formation: Triassic limestone and dolomite rocks. bTizkooh 

Formation: Lower Cretaceous Orbitolina-bearing limestone. 
 

 
Fig.ure 2. The indicator lithostratigraphic features of MVT-fluorite mineralization, 
Elika formation: limestone and dolomite rocks with the age of Triassic. Tizkooh 
formation: Orbitolina limestone with the age of lower Cretaceous. 

 

According to the descriptive model, structural features are indicators 
for modelling the prospectivity of MVT-fluorite deposits in the study 
area as well. Hence, we used proximity analysis from faults to recognize 
the indicator features. The number of mineral occurrences per class of 
proximity is recorded in Table 3. Considering Table 3, five classes of 
proximity, namely 0-150, 150-300, 450-600, 900-1050, and 1050-1200 m, 
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out of the 11 proximity classes from faults, were elicited as indicator 
features based on the geological map of the study area. Therefore, all the 
remaining proximity classes (i.e., 300-450, 600-750, 750-900, 1200-1350, 
1350-1500 and >1500 meter) were classified as non-indicator features 
(Figure 3). 

 

Table 3. The number of mineral occurrences in different classes of proximity from 
faults. 

The number of mineral occurrences Proximity from faults (m) 
17 0-150 
6 150-300 
0 300-450 
1 450-600 
0 600-750 
0 750-900 
1 900-1050 
5 1050-1200 
0 1200-1350 
0 1350-1500 
0 >1500 

 

 
Figure 3. The indicator classes of proximity from faults to prospect MVT-fluorite 
deposit. 

3.1. Conversion of descriptive information to quantitative data 

After identification of the indicator features, the relative importance 
of each of them should be evaluated. As the importance of individual 
indicator features vary varies with respect to the targeted type of mineral 
deposit, it is necessary to quantify the degree of importance in order to 
determine which indicator feature is superior or inferior. Hence, 
equations (1) and (2), and Tables 2 and 3 were used to calculate the RCs 
of the individual indicator features. After calculating the RCs, we used a 
logistic membership function (e.g., [7, 9, 38, 42]) to assign a fuzzy weight 
between 0 and 1, to each indicator feature, thus: 

 

𝜇𝐴𝑖𝑗
=

1

1+𝑒
−𝑎(𝑅𝐶𝐴𝑖𝑗−𝑏)      (3) 

 

where “b” is an inflexion point, “a” is the slope of the logistic function, 
and RCAij is the RC of the indicator feature Aij for the jth class in the ith 
evidential map. The parameters “b” and “a” determine the shape of the 
function and, hence, the output of the fuzzifier. These parameters are 
chosen based on subjective assessment. Table 4 indicates the RC of each 
indicator feature and its corresponding fuzzy weight,𝜇𝐴𝑖𝑗

 (data-driven 
fuzzy weight), for modelling the prospectivity of MVT-fluorite deposit 
in the study area. 

4. Results 

4.1. Generation of evidential maps 

After recognizing the indicator features and calculating their 
corresponding weights, RCAij and𝜇𝐴𝑖𝑗

, we generated weighted evidential 
layers. These evidential layers, namely a map of host lithostratigraphic 
features and a map of structures, are shown in Figure 4. In these maps, 
the RC of each indicator feature is a weight between 0 and 100 (Figures. 
4a and 4c), and the RC-based fuzzy score (𝜇𝐴𝑖𝑗

) is a weight between 0.01 
and 1 (Figures. 4b and 4d). 
 

 

Table 4. Weights, PAij, RCAij, and 𝜇𝐴𝑖𝑗
of indicator features for modelling the prospectivity of MVT-fluorite deposit in the study area. 

 Host lithology Proximity from fault (m) 
Indicative feature Elika formationa Tizkooh formationb 0-150 150-300 450-600 900-1050 1050-1200 

PAij 87.5 12.5 56.67 20 3.33 3.33 16.7 
RCAij  15.54 4.17 2.17 1.23 0.37 0.75 4.97 
𝜇𝐴𝑖𝑗

 0.75 0.24 0.17 0.15 0.13 0.14 0.27 

 

 
Figure 4. The evidence layers of (a) map of host lithostratigraphic units weighted on the basis of RC, (b) the map of host lithostratigraphic units weighted based on 𝜇𝐴𝑖𝑗

, 
(c) the map of proximity to faults weighted based on RC, and (d) the map of proximity to faults weighted based on 𝜇𝐴𝑖𝑗

. 
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4.2. Integration of evidential maps 

After generating the weighted evidential maps, i.e., the maps of host 
lithostratigraphic units and structures, they were integrated. We used 
three methods to combine them in order to generate a final predictive 
model of prospectivity for MVT-fluorite deposit in the study area as 
described below. 

4.2.1. Union score mineral potential model 

Considering the descriptive model of MVT-fluorite deposits, the 
simultaneous presence of indicator host lithologies and structures has a 
summative effect on the formation of this type of mineral deposits. 
Hence, equation (3), a summative function, is proper to calculate the US 
for generating a mineral prospectivity model in this case study. The 
mineral prospectivity model for MVT-fluorite deposit in the study area, 
generated using the US is shown in Figure 5. In this figure, areas with 
higher US have priority for further exploration. 

 

 
Figure 5. Mineral potential model of the MVT-fluorite deposit generated using the 
US function. 

4.2.2. RC-based index overlay 

The classical index overlay [1] is a knowledge-driven method for 
prospectivity mapping whereby each of the jth classes of the ith evidence 
layer is given a score, shown as Sij. The class scores can be positive 
integers or positive real values. There is no limitation on the range of the 
scores, except that the range of class scores in evidential maps must lie 
between the same minimum and maximum values), meaning that it is 
impossible to control the relative weight of an evidential map by making 
the range of its class scores differently from the range of class scores in 
other evidential maps. The relative weight of an evidential map in 
comparison with other evidence layers is quantified through the weight 
Wi, which is a positive integer. The weighted layers are then integrated 
to determine an average weighted score (S) for each spatial unit in the 
study area [1, 2]. In this case, we used the following index overlay 
equation as a data-driven index overlay method (e.g., [43]): 

   

 

1

 
n

Aij i
i

n

i
i

Rc W

S

W

==



      (5)

 

 

In fact, equation 5 is a knowledge-guided data-driven index overlay, 
in which the weight of each indicator feature is assigned using RC. In 
this method, the weight of jth indicator class of the ith evidence map is in 
fact RCAij, equivalent to Sij in the knowledge-driven multi-class index 
overlay method. Similar to the knowledge-driven multi-class index 
overlay, the relative importance of an evidential map compared to other 
layers is realized by setting the weights Wi, but in this case, setting the 
weights is based on the nature of the data. The weight for each evidence 
map, Wi, varies between 0 and 10, and is obtained from division of the 
maximum RC value of its indicator features in the corresponding 

evidential map to 10 in Table 4. Hence, for the study area, the weights 
of the evidential geological map and structural map are 8.7 and 5.6, 
respectively. Fig. 6 shows the mineral prospectivity model for the MVT-
fluorite deposit using the data-driven index overlay. 

Unlike the ordinary multi-class index overlay (e.g., [1, 44, 45, 46]), in 
the theoretical function of the RC-based index overlay (Figure 6), the 
output, S, varies between 0 and 100, but in fact generally S, at least for 
the study area, has no values near 100. The reason for this is the low 
values of RC, because there is no class of evidential feature in which the 
highest number of KMOs was present in the lowest percentage area with 
respect to the total study area, meaning that there were no values of PAij 
equal to 100 and no values of SAij equal to 1 for an indicator feature. In 
the map of Figure 6, areas with higher values of S have more priority for 
prospecting the targeted deposit. 

4.2.3. RC-based fuzzy logic modeling 

Weights assigned within the [0, 1] range are similar to probabilities; 
thus, the score of indicator features, 𝜇𝐴𝑖𝑗

, is a fuzzy or probabilistic 
weight as well. The fuzzy logic modelling (e.g., [7, 47-51]) is a kind of 
knowledge-driven method for MPM. Here, we used fuzzy logic 
modelling, but as a data-driven method. In fact, this is a knowledge-
guided data-driven fuzzy logic modelling, in which the weights of 
indicator features (fuzzy membership) are assigned based on data, i.e., 
the RC values. After generating fuzzy evidence maps (Figs. 4b and 4d), 
we used the fuzzy sum operator to generate the fuzzy favorability map 
shown in Figure 7. 

According to Figure 7, all parts of the study area have been ranked by 
a favorability degree between 0.01 and 1 for prospecting the MVT-
fluorite deposit. The fuzzy algebraic sum operator has an ‘increasive’ 
effect, and its output is larger than or equal to the maximum fuzzy score 
at every spatial unit. Thus, this operator is appropriate to combine sets 
of indicator feature [2]. In this research, the ‘increasive’ effect of the 
fuzzy algebraic sum operator is necessary, because in the RC method 
only indicator features of the targeted deposit are incorporated in 
assigning their weights based on their presence in KMOs, while all of 
non-indicator features have the same weight equal to 0.01. Therefore, in 
an area where there is an indicator feature with a fuzzy score higher than 
0.01 (because the weights more than 0.01 are assigned just to indicator 
features), the area has the potential to be prospected. In such a situation, 
the simultaneous presence of indicator features has an increasing effect 
on prediction. 

 

 
Figure 6. Mineral potential model of the MVT-fluorite deposit, generated using the 
RC based on the index overlay function. 
 

In this method, if in a KMO has a higher presence of indicator 
features (with higher RC), that KMO has higher importance for 
prediction than the KMOs with fewer presence of indicator features (i.e., 
with a smaller value of RC). Hence, a higher presence of indicator 
features (i.e., with higher RC) in an area indicates a higher prospectivity 
for that area. 
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Figure 7. Mineral prospectivity model for the MVT-fluorite deposit, generated 
using the RC-based fuzzy logic modelling with fuzzy sum operator. 

 

5. Discussion 

The new concept, RC, introduced in this paper, is a weight allocated 
to each indicator feature of mineral deposits and illustrates their relative 
importance in comparison with other indicator features. Considering 
that the indicator degree of an attribute (exploration feature) may be 
different from other attributes (other exploration features), by using the 
proposed method we can quantify the relative importance of a feature 
compared with other features in order to determine which one is 
superior or inferior. In this method, the importance of any indicator 
feature is not lost, because if an attribute is present in even one KMO, it 
contributes to the calculation of the weights of indicator features. In this 
method, classes of evidential maps are categorized into two subsets, 
indicator and non-indicator features. In this approach, indicator features 
are ranked and allocated by fuzzy weights (assigned based on data), but 
the weights of all non-indicator features are the same, equal to 0 or 0.01. 
In this situation, uncertainty for the indicator features is considered; 
hence, relative importance of the features is evaluated, but for non-
indicator features uncertainty and comparative importance cannot be 
evaluated. To address this problem, a fuzzy weight can be assigned to 
non-indicator features based on expert judgment, but the value of 
maximum weight allocated to a non-indicator feature should be less 
than the value of minimum weight, i.e., minimum RC, allocated to 
indicator features. By the RC approach, indicator and non-indicator 
features are discriminately recognized based on data, i.e., the 
characteristics of KMOs given in Table 1. The calculation of RC is 
worthwhile for assigning fuzzy weights to indicator features based on 
data. 

6. Conclusion 

The findings of this study are as follows. 
- By using a recognition coefficient (RC), all indicator features are 

incorporated in the procedure for weight assignment.  
- By using RC, uncertainty for the indicator features is considered; 

hence, the relative importance of indicator features is evaluated.  
- By using RC, an approach to calculate fuzzy weights of indicator 

features is introduced. 
- The RC approach is a data-driven weighting method to quantify the 

prediction ability of geological exploration criteria. 
- By using RC, a data-driven approach to generate weighted evidence 

maps (here weighted lithostratigraphic and structural evidential maps) 
is developed.  

- By using RC, a data-driven index overlay method is developed. 
- By using RC, the subjective judgment of the analyst is not 

incorporated in assigning the weight of evidence features, at least for 
ranking indicator features. 

- Finally, according to the results of this research, data-driven fuzzy 
logic modelling, .i.e., RC- based fuzzy logic modelling, is more effective 

for generating a mineral prospectivity model that is because of ranking 
the study area within the [0, 1] range with respect to probability. Hence, 
the RC approach can be used efficiently in the MPM to assign weights 
of exploration features with the contribution of all indicator features of 
the mineral deposit-type sought and without subjective judgment. The 
application of the proposed RC method in the study area has shown 
some promising areas with high values of prospectivity (Fig.7). These 
promising areas show a Mississippi valley-type fluorite type 
mineralization belt with a NE-SW trend that should be considered in 
further exploration stages. 
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