Reconstruction of Geological Images Based on an Adaptive Spatial Domain Filter: An Example to Introduce Quantum Computation to Geosciences

Document Type : Research Paper


1 Department of Electrical Engineering, Tafresh University, Tafresh, Iran.

2 Department of Mathematics, Tafresh University, Tafresh, Iran.



Reconstruction of geological images using partial measurement is one of the most important topics in geosciences. In many methods, this is done using training images and very complex models which increase the computational complexity. In the first part of the article, a simple method based on spatial domain filters such as median and mean filter has been presented to reconstruct geological images. One of the most significant characteristics of this method is that it does not need the training image; moreover, its computational complexity is less than the other advanced methods. Via this method, it is easy to reconstruct binary, continuous, and three-dimensional images. The results show that the reconstruction accuracy of the proposed method is also acceptable. In the second part of the article, to introduce quantum computing to geosciences and encourage researchers to work on this issue, a quantum median filter is proposed to reconstruct geological images. According to the results, this method has much less computational complexity than classical methods such as DS. Also, its results are acceptable in terms of reconstruction rate. Due to the high speed of quantum algorithms and the widespread use of quantum computers in the near future, researchers in this field must become more familiar with quantum computing.


[1] Calderón, Hernán, Jorge F. Silva, Julián M. Ortiz, & Alvaro Egaña. (2015). Reconstruction of channelized geological facies based on RIPless compressed sensing. Computers & Geosciences, 77, 54-65. doi:
[2] Abdollahifard, Mohammad J., & Sadegh Ahmadi. (2016). Reconstruction of binary geological images using analytical edge and object models. Computers & Geosciences, 89 , 239-251. doi:
[3] Lee, Tai-Yong, & John H. Seinfeld. (1987). Estimation of two-phase petroleum reservoir properties by regularization. Journal of Computational Physics, 69(2), 397-419. doi:
[4] Klise, Katherine A., Gary S. Weissmann, Sean A. McKenna, Elizabeth M. Nichols, Jedediah D. Frechette, Tim F. Wawrzyniec, & Vince C. Tidwell. (2009). Exploring solute transport and streamline connectivity using lidar based outcrop images and geostatistical representations of heterogeneity. Water Resources Research, 45(5). doi:
[5] Skøien, J. O., Merz, R., & Blöschl, G. (2006). Top-kriging-geostatistics on stream networks. Hydrology and Earth System Sciences, 10(2), 277-287. doi:
[6] Emery, X. (2008). Uncertainty modeling and spatial prediction by multi-Gaussian kriging: accounting for an unknown mean value. Computers & geosciences, 34(11), 1431-1442. doi:
 [7] Mahmud, K., G. Mariethoz, J. Caers, P. Tahmasebi, & A. Baker. (2014). Simulation of Earth textures by conditional image quilting. Water Resources Research, 50(4), 3088-3107.doi:
[8] Mariethoz, Gregoire, Philippe Renard, & Julien Straubhaar. (2010) .The Direct Sampling method to perform multiple point geostatistical simulations. Water Resources Research, 46 (11).doi:
[9] Kalantari, Sadegh, & Mohammad Javad Abdollahifard. (2016), Optimization-based multiple-point geostatistics: A sparse way."Computers & Geosciences,95, 85-98.doi:
[10] Abdollahifard, Mohammad J. (2016). Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Computers & Geosciences, 86, 64-74. doi:
[11] Pourfard, Mohammadreza, Mohammad J. Abdollahifard, Karim Faez, Sayed Ahmad Motamedi, & Tahmineh Hosseinian. (2017). PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization. Computers & Geosciences, 102, 116-138.doi:
[12] Strebelle, Sebastien. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1-21. doi:
[13] Yang, Liang, Weisheng Hou, Chanjie Cui, & Jie Cui. (2016). GOSIM: A multi-scale iterative multiple-point statistics algorithm with global optimization. Computers & Geosciences, 89, 57-70. doi: 2015.12.020
[14] Sahimi, Muhammad, & Pejman Tahmasebi. (2022). The Potential of Quantum Computing for Geoscience. Transport in Porous Media, 1-21. doi: 10.1007/s11242-022-01855-8
[15] Nielsen, Michael A., & Isaac Chuang. (2002). Quantum computation and quantum information. doi:
[16] Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical review letters, 103(15), 150502. doi:
[17] Lu, C. T., Chen, Y. Y., Wang, L. L., & Chang, C. F. (2016). Removal of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size window. Pattern Recognition Letters, 80, 188-199. doi:
[18] Zhang, Peixuan, & Fang Li. (2014). A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE signal processing letters, 21(10), 1280-1283. doi: 10.1109/LSP.2014.
[19] Kalantari, S., Ramezani, M., & Madadi, A. (2020). Introducing a New Hybrid Adaptive Local Optimal Low Rank Approximation Method for Denoising Images. International Journal of Industrial Electronics Control and Optimization, 3(2), 173-185. doi:
[20] Mariethoz, G., & Caers, J. (2014). Multiple-point geostatistics: stochastic modeling with training images. John Wiley & Sons.
[22] Feynman, Richard P. (2018). Simulating physics with computers. Feynman and computation. CRC Press, 133-153.
[23] Wang, Zhaobin, Minzhe Xu, & Yaonan Zhang. (2021). Review of quantum image processing. Archives of Computational Methods in Engineering, 1-25. doi:
[24] Li, Panchi, Xiande Liu, & Hong Xiao. (2018). Quantum image median filtering in the spatial domain. Quantum Information Processing, 17(3), 1-25. doi:
[25] Jiang, S., Zhou, R. G., Hu, W., & Li, Y. (2019). Improved quantum image median filtering in the spatial domain. International Journal of Theoretical Physics, 58(7), 2115-2133. doi:
[26] Le, P. Q., Iliyasu, A. M., Dong, F., & Hirota, K. (2011). Strategies for designing geometric transformations on quantum images. Theoretical Computer Science, 412(15), 1406-1418. doi:
[27] Li, P., Liu, X., & Xiao, H. (2017). Quantum image weighted average filtering in spatial domain. International Journal of Theoretical Physics, 56(11), 3690-3716. doi:
[28] Wang, J., Jiang, N., & Wang, L. (2015). Quantum image translation. Quantum Information Processing, 14(5), 1589-1604. doi: [2] Cargill, S.M., & Clark, A.L. (1978). Report on the activity of IGCP Project 98. J. Int. Assoc. Math. Geol., 10, 411-417. doi:
[22] Nykänen, V., Groves, D.I., Ojala, V.J., Eilu, P., & Gardoll, S.J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper-gold deposits in the northern Fennoscandian shield, Finland. Aust. J. Earth Sci., 55, 25–38. doi:
[23] Yousefi, M., & Carranza, E.J.M. (2016). Data-Driven Index Overlay and Boolean Logic Mineral Prospectivity Modeling in Greenfields Exploration. Nat. Resour. Res., 25, 3–18. doi:
[24] Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. J. African Earth Sci., 128, 1–4. doi:
[25] Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochemical Explor., 164, 94–106. doi:
[26] Dempster, A.P. (1968). A generalization of the Bayesian inference. J. R. Stat. Soc., 30, 205–447.
[27] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivariate mapping.pdf. Ann. Math. Stat., 38, 325–339.
[28] Wang, J., Jiang, N., & Wang, L. (2015). Quantum image translation. Quantum Information Processing, 14(5), 1589-1604. doi: