[1] Calderón, Hernán, Jorge F. Silva, Julián M. Ortiz, & Alvaro Egaña. (2015). Reconstruction of channelized geological facies based on RIPless compressed sensing. Computers & Geosciences, 77, 54-65. doi:
https://doi.org/10.1016/j.cageo.2015.01.006
[2] Abdollahifard, Mohammad J., & Sadegh Ahmadi. (2016). Reconstruction of binary geological images using analytical edge and object models. Computers & Geosciences, 89 , 239-251. doi:
https://doi.org/10.1016/j.cageo.2015.12.018
[4] Klise, Katherine A., Gary S. Weissmann, Sean A. McKenna, Elizabeth M. Nichols, Jedediah D. Frechette, Tim F. Wawrzyniec, & Vince C. Tidwell. (2009). Exploring solute transport and streamline connectivity using lidar based outcrop images and geostatistical representations of heterogeneity. Water Resources Research, 45(5). doi:
https://doi.org/10.1029/2008WR007500
[5] Skøien, J. O., Merz, R., & Blöschl, G. (2006). Top-kriging-geostatistics on stream networks. Hydrology and Earth System Sciences, 10(2), 277-287. doi: https://doi.org/10.5194/hess-10-277-2006
[6] Emery, X. (2008). Uncertainty modeling and spatial prediction by multi-Gaussian kriging: accounting for an unknown mean value. Computers & geosciences, 34(11), 1431-1442. doi:
https://doi.org/10.1016/j.cageo.2007.12.011
[7] Mahmud, K., G. Mariethoz, J. Caers, P. Tahmasebi, & A. Baker. (2014). Simulation of Earth textures by conditional image quilting. Water Resources Research, 50(4), 3088-3107.doi:
https://doi.org/10.1002/2013WR015069
[8] Mariethoz, Gregoire, Philippe Renard, & Julien Straubhaar. (2010) .The Direct Sampling method to perform multiple point geostatistical simulations. Water Resources Research, 46 (11).doi:
https://doi.org/10.1029/2008WR007621
[10] Abdollahifard, Mohammad J. (2016). Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Computers & Geosciences, 86, 64-74. doi:
https://doi.org/10.1016/j.cageo.2015.10.010
[11] Pourfard, Mohammadreza, Mohammad J. Abdollahifard, Karim Faez, Sayed Ahmad Motamedi, & Tahmineh Hosseinian. (2017). PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization. Computers & Geosciences, 102, 116-138.doi:
https://doi.org/10.1016/j.cageo.
2016.12.012
[12] Strebelle, Sebastien. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1-21. doi:https://doi.org
/10.1023/A:1014009426274
[13] Yang, Liang, Weisheng Hou, Chanjie Cui, & Jie Cui. (2016). GOSIM: A multi-scale iterative multiple-point statistics algorithm with global optimization. Computers & Geosciences, 89, 57-70. doi:
https://doi.org/10.1016/j.cageo. 2015.12.020
[14] Sahimi, Muhammad, & Pejman Tahmasebi. (2022). The Potential of Quantum Computing for Geoscience. Transport in Porous Media, 1-21. doi:
10.1007/s11242-022-01855-8
[15] Nielsen, Michael A., & Isaac Chuang. (2002). Quantum computation and quantum information. doi: https://doi.org/10.1017/CBO9780511976667
[16] Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical review letters, 103(15), 150502. doi:https://doi.org/10.1103/PhysRevLett.
103.150502
[17] Lu, C. T., Chen, Y. Y., Wang, L. L., & Chang, C. F. (2016). Removal of salt-and-pepper noise in corrupted image using three-values-weighted approach with variable-size window. Pattern Recognition Letters, 80, 188-199. doi:
https://doi.org/10.1016/
j.patrec.2016.06.026
[18] Zhang, Peixuan, & Fang Li. (2014). A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE signal processing letters, 21(10), 1280-1283. doi:
10.1109/LSP.2014.
2333012
[19] Kalantari, S., Ramezani, M., & Madadi, A. (2020). Introducing a New Hybrid Adaptive Local Optimal Low Rank Approximation Method for Denoising Images. International Journal of Industrial Electronics Control and Optimization, 3(2), 173-185. doi:
https://doi.org/10.22111/ieco.2019.31245.1199
[20] Mariethoz, G., & Caers, J. (2014). Multiple-point geostatistics: stochastic modeling with training images. John Wiley & Sons.
[22] Feynman, Richard P. (2018). Simulating physics with computers. Feynman and computation. CRC Press, 133-153.
[23] Wang, Zhaobin, Minzhe Xu, & Yaonan Zhang. (2021). Review of quantum image processing. Archives of Computational Methods in Engineering, 1-25. doi:
https://doi.org/10.1007/s11831-021-09599-2
[25] Jiang, S., Zhou, R. G., Hu, W., & Li, Y. (2019). Improved quantum image median filtering in the spatial domain. International Journal of Theoretical Physics, 58(7), 2115-2133. doi:
https://doi.org/10.1007/s10773-019-04103-w
[26] Le, P. Q., Iliyasu, A. M., Dong, F., & Hirota, K. (2011). Strategies for designing geometric transformations on quantum images. Theoretical Computer Science, 412(15), 1406-1418. doi:
https://doi.org/10.1016/j.tcs.2010.11.029
[27] Li, P., Liu, X., & Xiao, H. (2017). Quantum image weighted average filtering in spatial domain. International Journal of Theoretical Physics, 56(11), 3690-3716. doi: https://doi.org/10.1007/s10773-017-3533-1
[28] Wang, J., Jiang, N., & Wang, L. (2015). Quantum image translation. Quantum Information Processing, 14(5), 1589-1604. doi: https://doi.org/10.10 [2]
Cargill, S.M., & Clark, A.L. (1978). Report on the activity of IGCP Project 98. J. Int. Assoc. Math. Geol., 10, 411-417. doi:
https://doi.org/10.1007/BF02461973
[22] Nykänen, V., Groves, D.I., Ojala, V.J., Eilu, P., & Gardoll, S.J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper-gold deposits in the northern Fennoscandian shield, Finland. Aust. J. Earth Sci., 55, 25–38. doi: https://doi.org/10.1080/08120090701581372
[23] Yousefi, M., & Carranza, E.J.M. (2016). Data-Driven Index Overlay and Boolean Logic Mineral Prospectivity Modeling in Greenfields Exploration. Nat. Resour. Res., 25, 3–18. doi: https://doi.org/10.1007/s11053-014-9261-9
[24] Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. J. African Earth Sci., 128, 1–4. doi: https://doi.org/10.1016/j.jafrearsci.2017.02.023
[25] Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochemical Explor., 164, 94–106. doi: https://doi.org/10.1016/j.gexplo.2015.10.008
[26] Dempster, A.P. (1968). A generalization of the Bayesian inference. J. R. Stat. Soc., 30, 205–447.
[27] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivariate mapping.pdf. Ann. Math. Stat., 38, 325–339.
[28] Wang, J., Jiang, N., & Wang, L. (2015). Quantum image translation. Quantum Information Processing, 14(5), 1589-1604. doi: https://doi.org/10.1007/s11128-014-0843-6