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A B S T R A C T 

 

Reconstruction of geological images using partial measurement is one of the most important topics in geosciences. In many methods, this is 
done using training images and very complex models, which increase the computational complexity. In the first part of the article, a simple 
method based on spatial domain filters, such as median and mean filters is presented in order to reconstruct geological images. One of the 
most significant characteristics of this method is that it does not need the training image; moreover, its computational complexity is less than 
the other advanced methods. Via this method, it is easy to reconstruct binary, continuous, and three-dimensional images. The results show 
that the reconstruction accuracy of the proposed method is also acceptable. In the second part of the article, in order to introduce quantum 
computing to geosciences and encourage researchers to work on this issue, a quantum median filter is proposed to reconstruct geological 
images. According to the results, this method has much less computational complexity than classical methods, such as DS. Also, its results are 
acceptable in terms of reconstruction rate. Due to the high speed of quantum algorithms and the widespread use of quantum computers in 
the near future, it is necessary for researchers in this field to become more familiar with quantum computing. 
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1. Introduction 

Estimating different physical parameters in underground aquifers 
using a small number of samples is one of the most important issues in 
geosciences. In order to study and examine the aquifers’ behavior in a 
field, they are sampled by geologists. However, sampling all parts of a 
field is not possible due to practical and financial constraints [1]. That is 
why sampling is done randomly in some parts of a field; therefore, 
reconstructing a field using few samples can be considered as an image 
reconstruction problem. The parts whose pixel values are unknown (or 
NAN) must be filled using some techniques. The stronger these 
techniques, the fewer samples would be needed to reconstruct the image 
field. For this purpose, the statistical knowledge of geologists is usually 
used in the reconstruction process. This knowledge is often presented in 
the form of a model whose shape might be a histogram, variogram, or a 
training image. These are called geostatistical models. 

One of the geostatistical models used in this field is the multi-
Gaussian distribution. Since Gaussian distributions include useful 
mathematical features, they are used in modelling spatial variables [2,3]. 
Due to inherent limitations of such distributions in terms of their 
variability, the output images are often smooth and incompatible with 
realistic heterogeneities in geological images. Also, the output images do 
not have appropriate connectivity [4]. 

The other models used in this area of science are called kriging 
methods. These methods are based on interpolation [5,6]. Kriging is an 
estimation method based on a weighted moving average. Smoothing the 
high frequency parts of the image during interpolation is one of the 
features of the kriging model. This means that the variance of the 
estimated samples looks very close to the real points, and there are fewer  

 
 
 
differences compared to the real points. One of the advantages of this 
method is its low computational complexity. 

There are also some other sets of methods which are based on training 
images [7-11]. Among these methods are multiple-point simulation 
methods. Using training images, geologists can express geological 
concepts; therefore, the statistical model used in these methods is 
similar to the one used in the training image. For simulation, a grid is 
first created. At the beginning of the simulation, only the values of the 
sampled points are known, and the rest of the network has a NAN value. 
The simulation grid is swept in a random direction. In each simulation 
node, the window around the node is considered as a among data event. 
Then, of the existing patterns in the training image, the pattern which 
satisfies the hard data is selected, and its value is used for filling the data 
event. 

Multiple-point simulation methods are divided into patch-based and 
pixel-based methods. In pixel-based methods, when the equivalent of a 
data event is found in the training image, only its central pixel is replaced 
in the simulation grid. On the other hand, in patch-based methods, a 
substantial part of the found pattern is transferred to the simulation grid. 
The DS algorithm is one of the widely used pixel-based methods [8]. In 
this method, instead of forming a database from the training image, the 
focus is on finding the most similar pattern in the training image. For 
each data event, its distance from the patterns of the training image is 
calculated, and the pattern with the smallest distance is selected, and its 
central pixel is placed in the data event. One of the advantages of this 
algorithm is the ability to simulate binary and continuous images and 
solve the problem of dealing with non-stationary images. However, it is 
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too slow due to the difficulty of filling the simulation grid pixel by pixel 
and searching for similar pixels in the training image. In pixel-based 
methods, the simulation grids are filled pixel by pixel. Also, in these 
methods, doing a search to find the matching pixels in the training 
image is inevitable; therefore, their processing speed is rather low. 

Finding a pattern similar to a data event is called template matching. 
During the execution of the simulation algorithm, researchers have to 
deal with a great number of template matching problems. This itself 
increases the computational complexity. In order to solve the problem 
of template-matching, some image patterns are usually extracted from 
the training image and put into the database. In these methods, fixed 
sized patterns are extracted from the training image during the 
preprocessing phase. If the size of such patterns is small, the large-scale 
behavior of the image will not be modelled well, and if the size of the 
patterns is big, the computational complexity will also be high. To 
overcome this problem, a multi-scale structure is usually used which in 
turn increases the computational complexity again [12]. 

The majority of multiple-point simulation methods are sequential. In 
these methods, the simulation grid is filled sequentially, and the pattern 
which is put in the simulation grid is highly dependent on the selected 
pattern in the previous stage. Therefore, if the template matching does 
not lead to selecting an appropriate pattern, this negatively affects the 
patterns selected in the next stages. This results in error accumulation 
and reduces the quality of the simulated image [13]. Some methods 
which have been proposed recently are not sequential. They are called 
optimization-based methods [2,9,13]. These methods consider the 
image simulation problem as an optimization one. In the Yang method, 
a global optimization-based algorithm has been proposed which defines 
a cost function that expresses the difference between the output 
realization and the training image [13]. To achieve the simulated image, 
this cost function is minimized using an iterative multi-scale method in 
each iteration. The positive point about this method is the creation of 
various patterns in the simulated image. On the downside, tuning 
algorithm parameters, such as the number of appropriate iterations at 
each scale in order to achieve an acceptable solution is difficult. 

In [9], another model which is called the sparse representation has 
been used to solve the optimization problem. In this model, it is assumed 
that an image patch can be reconstructed with a linear combination of 
a limited number of dictionary atoms. Since only a few atoms of 
dictionary are combined together in order to create an image patch, this 
method is able to create a wide variety of patterns that are not similar to 
training image patterns. However, one of the disadvantages of this 
method is the blurring caused by the averaging the simulated patches, 
which negatively affects the output image. Another problem is the high 
computational complexity, which is due to solving an optimization 
problem. 

In [2], another model to solve the problem of image reconstruction 
has been used. This model which does not need a training image is called 
ULEM. In this method, an analytical edge model is employed. ULEM is 
based on the assumption that within a suitable window size, binary 
images can be described using a linear edge model. However, since this 
method is based on solving an optimization problem in a great number 
of iterations, its computational complexity is very high. In all training 
image-based methods, choosing an appropriate training image is a 
fundamental challenge. If the wrong training image is selected, the 
simulated image will not be reliable [2]. Template matching is usually 
used to select the appropriate training image. It is a widely-used method 
for matching different templates; however, its computational 
complexity is very high. In practice, the reconstructed images are three-
dimensional and very large. This can cause a significant increase in the 
computational complexity. Thus, one approach is to use the methods 
that have lower computational complexity and yield acceptable results. 

Recently, advances have been made in the field of quantum 
computing and quantum image processing. In reference [14], which is a 
review article, some applications of quantum computing, such as 
reconstruction of porous media, simulating fluid flow, and big data 
analysis in geosciences have been discussed. Quantum technology 
reduces the computational complexity of algorithms. Quantum 

algorithms are able to solve many mathematical problems in a shorter 
time. Making significant progress in geosciences, especially in 
reconstruction and simulation, are dependent on advancements in 
computer hardware and software technology. These days, it is essential 
for geologists to become more familiar with quantum algorithms in 
order to take advantage of them when they are available. 

One of the important features of quantum computing is its ability to 
solve least squares problem at a much faster speed. In general, image 
reconstruction can be considered as a static system identification 
problem. According to the samples in the image, estimating the missing 
pixels leads to solving a linear problem. One of the simplest and most 
widely used methods of data estimation and model fitting is the least 
squares method. The mentioned problem is represented as the linear 
equation in which  Ax = b. To solve this problem, n-bit sequences must 
be stored. The computational complexity of storing n-bit sequences is 
O(n2n)  in classical computers, but the order of O(n)  in quantum 
computers. When performing operations on sequences, such as bitwise 
inversion, classical computers need O(2n), while quantum computers 
only need O(1) [15]. The best available classical method to solve this 
problem is the conjugate gradient method, which requires O(ksn). To 
solve sparse matrices, k is the condition number, which is the ratio of 
the largest eigenvalue to the smallest one, and s is the sparsity value or 
the number of non-zero values in each row. On the other hand, there is 
the method called the HHL quantum algorithm, which solves the least 
squares problem with O(kslog2n) [16]. The HHL quantum algorithm 
greatly reduces the computational cost in high-dimensional problems, 
such as three-dimensional images. 

In the second part of the article, an image reconstruction method 
based on the classical median filter will be presented. It has yielded 
acceptable results in terms of speed and reconstruction accuracy 
compared to other methods. In the proposed method, no training image 
is needed, and reconstruction can be done with relatively good speed 
and accuracy, even with small samples. In order to introduce quantum 
computing to geosciences, section 3 explains some preliminaries of 
quantum computing. In section 4, a quantum median filter will be 
presented to reconstruct geological images, and quantum and classical 
computations will be compared. In section 5, a summary of the research 
is presented. 

2. The proposed reconstruction method based on the 
classical median filter 

In image reconstruction, the value of some points is known, and the 
value of the other points must be determined using the available 
samples. Noise removal is one of the methods by which images are 
reconstructed. The aim of this study is to use this method in geological 
image reconstruction. The Median filter is a commonly used method in 
image processing to remove salt and pepper noise. This filter falls under 
the category of spatial domain filters. In the original version of this 
method, a fixed window is assumed to exist around each pixel of the 
noisy image. Then, the median value of the pixels is placed in the center 
of the window. The important thing about salt and pepper noise is that 
the pixels destroyed by this noise appear as the maximum and minimum 
gray levels in the image. To improve the performance of this filter, 
different ideas have been proposed [17-19]. One is to apply the window 
size adaptively. That is, the size of the window around each noisy pixel 
is determined according to the conditions and values of the neighboring 
pixels. In this article, in order to use these kinds of filters to reconstruct 
the image, it is assumed that the parts whose value is unknown in the 
sampled image are the noise points. Therefore, an adaptive window is 
considered around the non-valued pixels, and the desired pixel value is 
estimated using the samples within that window. To choose the right 
window size, the idea proposed in reference [18] was employed. It 
should be noted that in [18], this idea is used to determine the noisy 
point; but in this paper that idea is used to determine the appropriate 
window size in order to estimate those non-valued pixels. The steps 
taken during this algorithm are as follow: first, a 3 × 3 window around 
unknown pixels is considered. Then, the window size is increased by one 
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unit around that pixel continues up to the point where the minimum 
and maximum values of two consecutive windows are equal to each 
other. To avoid errors and the use of irrelevant data, the window 
continues to be enlarged to a maximum size of 43. This threshold was 
selected after testing the proposed algorithm on different images. Take 
figure 1 as an example. In this picture, the average reconstruction rate is 
shown according to the window size in sampling percentages of 3% and 
5% for the Wall-stone and Delta images. As shown, increasing the 
window size more than 43 leads to a significant decrease in 
reconstruction accuracy. Using a threshold of 43, we can use the 
information of the neighboring pixels in this application. In addition, in 
this way, the other irrelevant objects in the image do not interfere with 
pixel estimation. It should be noted that for an original image 𝐼𝑜 and a 
reconstructed image  𝐼𝑟 , the percentage of image reconstruction rate is 
obtained through equation (1). In this equation, 𝑁 is the total number 
of image pixels, and (𝑥, 𝑦) is the corresponding position in the image. 

 

𝐴 = (1 −
1

𝑁
∑ |𝐼𝑜(𝑥, 𝑦) − 𝐼𝑟(𝑥, 𝑦)|(𝑥1,𝑥2)∈𝑃 × 100)                                 (1) 

 

After determining the appropriate window size, all the samples within 
this window are extracted. Then, their median and mean values are 
calculated. Eventually, the average of the mean and median is 
considered as the pixel value. The reason for using the average of the 
median and the mean is that neither of them (neither the median nor 
the mean) can be a good representative of several numbers on their own. 
To make it clear, suppose that the central pixel is noisy, and the window 
around it has the values of non-noisy pixels as {1, 10, 62, 66, 67, 189, 241, 
234, 203}. 

 
Figure1. The average reconstruction rate for the wall-stone and Delta image for 
sampling percentage 3% and 5%. 

 

The central pixel within this window should be replaced with a non-
noise value. The mean value of these pixels is equal to 119, and their 
median value is equal to 67. In this example, the difference between 
these two numbers is about 52. If we only use the median or average 
values, we cannot obtain an acceptable result. The reason is that, 
according to the condition of the image in this window, we cannot 
determine whether the mean is a good representative or the median is a 
better representative. Therefore, to minimize the error, it seems more 
logical to choose the average of median and mean for the central pixel. 
In other words, the information of both the median and mean are used 
in this case. The other combinations related to the mean and median 
including their weighted averages may lead to better results. However, 
to avoid increasing the computational complexity, the simplest solution 
(the average of two parameters) was chosen. That is because the average 
is an easy choice for two statistical parameters. The reconstruction 
algorithm of this paper is listedwithinin more detail in Table 1. Some of 
the parameters used in the algorithm are as follows. 

 

w: window size 
wmax: The largest acceptable window size 

ai,j
min(w): The smallest intensity in the window with the centrality of  

(i, j). 
 

ai,j
max(w): The largest intensity within the window with the centrality 

of (i, j). 
 

ai,j
mean(w): The average of pixels within the window with the size of  

w to the centrality of  (i, j). Needless to say, the value of the gray level in 
those pixels must not be equal to either minimum or maximum value of 
gray level within the window. 

 

ai,j
med(w): The median of pixels within the window with the size of  w 

to the centrality of  (i, j).  Needless to say, the value of the gray level in 
those pixels must not be equal to either minimum or maximum value of 
the gray level within the window. 

This method allows the users to reconstruct binary, continuous, and 
three-dimensional images. It should be noted that in binary images, the 
estimated pixel may have a continuous value. To convert it into a binary 
image, the thresholding method in the article [9] was used. This method 
was developed by the authors of this article. In this thresholding method, 
the histogram is filtered with a 50-point hamming window, and the 
deepest valley between the two peaks is considered as the threshold 
value. To reconstruct 3D images, all we needed to do was to extract 3D 
cubic patches from the image. After calculating a sufficient number of 
samples, we used them to estimate the desired pixel. In this article, due 
to a lack of access to real data, geological training images available in 
[20, 21] were used. These images have important features in terms of 
data dispersion. For this reason, they were used to test simulation and 
reconstruction algorithms. It is highly likely that the methods which 
yield good results on these images will have acceptable performance on 
real data [20]. In order to check the efficiency of the proposed method 
and compare it with other methods, tests were performed on 2D and 3D 
training images of figure 2. The results are shown in figures 3 to 7. For 
comparison, DS and ULEM methods were used [2, 8]. ULEM is similar 
to the proposed method in that none of them has a training image. 
Needless to mention, DS is one of the conventional reconstruction 
methods in this field that uses a training image. 

It should be noted that the codes of the continuous version of the 
ULEM method were obtained from its authors. As for the DS method, 
the code published by the authors was used [21]. DS algorithm 
parameters were set as 𝑟 = 20, 𝑛𝐷𝑆 = 50 and 𝑟𝐷𝑆 = 1, and in the ULEM 
method 𝑁𝑖𝑡𝑒𝑟𝑠 = 1, 𝜆 = 1, and 𝜂 = 15. As shown in figures 3 and 4, the 
proposed method has better results compared to the other two methods, 
both visually and in terms of the reconstruction rate criterion. Also, 
according to figures 6 and 7, the proposed method has performed better 
in all sampling rates. In the proposed method, the average value of the 
median and the mean of the samples in the window is used to estimate 
a pixel. This process must be done for all pixels of the image. The 
computational complexity of the average is 𝑂(𝑛) . Using the cube sort 
method, we reached the same computational complexity in the 
proposed algorithm. Therefore, assuming a 𝑚 size patch for a  2𝑛 × 2𝑛 
image, the computational complexity of the proposed method will be 
the order of 𝑂(𝑚22𝑛) . In the ULEM method, due to the use of the 
gradient descent algorithm, the computational complexity is the order 
of O(k22nm2), where k is the number of iterations and m is the patch 
size [2]. In gradient descent, a big number is usually chosen for k in 
order to reach the optimal solution. Since the extracted patches have 
maximum overlap and considering the size of the window used in the 
ULEM method, the number of patches extracted from the image is 
relatively close to the total number of pixels. As an example, in an image 
with a size of  200 × 200, which has a total of 40,000 pixels, there are 
39,204 patches with size of  3 × 3. In the DS method, template matching 
is used. In template matching, 𝑚 size patch is convolved with the whole 
image. Therefore, the computational complexity of the DS method is at 
least O (24𝑛𝑚2)  [8]. The analysis shows that the computational 
complexity of the proposed method is much lower than the other 
methods. In order to practically compare the speed of the algorithms, 
tests have been performed on the Wall-Stone image, and the execution 
time for the algorithms is shown in figure 8. In this figure, t(A/B) shows 
the ratio of the execution time of algorithm A to algorithm B. Larger  
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Table 1. The proposed classical algorithm for the reconstruction of geological images. 

Convert all NAN points of the incomplete image to salt and pepper noise (replace with values of 0 or 255). 
Do steps 1 to 5 for all noisy points with position (𝑖, 𝑗) : 

1- Initialize 𝑤 = 3 and 𝑤𝑚𝑎𝑥 = 43. 
2- Calculate the values 𝑎𝑖,𝑗

𝑚𝑖𝑛(𝑤) , 𝑎𝑖,𝑗
𝑚𝑎𝑥(𝑤), 𝑎𝑖,𝑗

𝑚𝑖𝑛(𝑤 + 2) and  𝑎𝑖,𝑗
𝑚𝑎𝑥(𝑤 + 2). 

3- Increase the size of the window (𝑤 = 𝑤 + 2) until  𝑎𝑖,𝑗
𝑚𝑖𝑛(𝑤) ≠ 𝑎𝑖,𝑗

𝑚𝑖𝑛(𝑤 + 2), 𝑎𝑖,𝑗
𝑚𝑎𝑥(𝑤) ≠ 𝑎𝑖,𝑗

𝑚𝑎𝑥(𝑤 + 2) and 𝑤 < 𝑤𝑚𝑎𝑥 . 
4- Calculate 𝑎𝑖,𝑗

𝑚𝑖𝑛(𝑤) and  𝑎𝑖,𝑗
𝑚𝑒𝑑(𝑤). 

5- Place 𝑓𝑖,𝑗 = (𝑎𝑖,𝑗
𝑚𝑒𝑑(𝑤) + 𝑎𝑖,𝑗

𝑚𝑒𝑎𝑛(𝑤))/2.    
6- If the image is binary, convert the output image into a binary image using the thresholding method in the reference [9]. 

 

                                                                   
(a)                (b)      (c) 

Figure 2. The training images used in this paper: (a) Wall-Stone, (b) Ti-Channel, (c) Delta. 

 
 

 
Figure 3. The reconstruction results of ULEM, DS, and the proposed method for the wall-stone Image: (a) 5% sampling Image, (b) 8% sampling image, (c) 16% sampling 
image, (d-f) results for ULEM, (g-i) results for DS, (j-l) results for proposed method. 

(j) (g) (d) (a)
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Figure 3. The reconstruction results of ULEM, DS, and the Proposed Method for the Wall-Stone Image: (a) 5% 

sampling Image, (b) 8% sampling Image, (c) 16% sampling Image, (d-f) results for ULEM, (g-i) results for DS, (j-

l) results for Proposed Method. 
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Figure 4. The reconstruction results of the ULEM, DS and the proposed method for Ti-channel image: (a) 3% sampling Image, (b) 5% sampling Image, (c) 8% sampling 
Image, (d-f) results for ULEM, (g-i) results for DS,(j-l) results for proposed method. 

 

number indicates that algorithm A is slower than algorithm B. All the 
tests were performed on a computer with a Corei7, 6GB RAM, and on 
MATLAB 2016. According to figure 8, ULEM is faster than DS, and the 
proposed method is much faster compared to ULEM. Also, the results 
indicate that the reconstruction accuracy of the proposed method is 
acceptable in terms of both quantity and quality compared to the other 
methods. It should be noted that the proposed method has achieved the 
above results without need to use the training image. 

3. An overview of quantum computing 

Richard Feynman first proposed that quantum systems could be 
simulated using a special version of computation based on quantum 
mechanics. On the other hand, simulating systems with more than a few 
particles are very complicated in classical computation [22]. According 
to Moore's law, the efficiency of computers doubles every 2-3 years [23]. 
Since a limited number of transistors can be used inside the electronic 
chips, and complexities involved in producing such electronic devices 
with a large number of transistors, this law was on the verge of being 
violated. With the advent of quantum technology, this became closer to 
reality. Due to the use of quantum properties, such as superposition and 
entanglement, this technology solves the relevant problems at much 
faster speed. In 1994, Shore presented a quantum algorithm for solving 
the integer factorization problem with polynomial time [23]. Also, for 
conducting a search in an irregular set with quadratic speedup, Graver's 
algorithm was presented [23]. These two algorithms were good 
indicators to prove the extraordinary power of quantum computing 
compared to classical ones due to the significant reduction of the 
computational complexity. In recent years, studies have been 
conducted in various fields, including control, finance, chemistry, 
mathematics, biology, code breaking, sand image processing on the 

applications of quantum computing. However, so far, very few studies 
have been carried out on the application of quantum computing in 
geosciences. For this reason, in this article, after a brief introduction of 
quantum computing, a version of the quantum median filter will be 
presented for image reconstruction, and its computational complexity 
will be compared to classical methods. 

A quantum computer is a machine that uses the principles of 
quantum mechanics to solve various problems [22]. Quantum 
computers process quantum bits or qubits as units of information. 
Unlike classical bits which only have a value of 0 or 1, quantum bits can 
have both states at the same time. This is one of the principles of 
quantum computing, which is known as superposition of states. 

The numbers 0 and 1 can represent the downward and upward spin 
of atoms. In quantum computation, 0 and 1 are not regular numbers. 
They are two-dimensional vectors, which in Dirac's notation are in the 
form |0⟩ = (1  0)𝑇   and |1⟩ = (0  1)𝑇  respectively, where T means the 
conjugate transpose. A general qubit in terms of unit vector in a 2D 
Hilbert space is a superposition of these two states, shown as: 

 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ = 𝛼(1
0
) + 𝛽(0

1
)                                                       (2) 

 

Complex numbers α and β are called probability amplitudes, which 
indicate the probability of finding a qubit in the state |0⟩ or |1⟩. The next 
difference is that when measuring a qubit, the results is 0 or 1 with a 
probability of |α|2  or |β|2 respectively. Since |α|2 + |β|2 = 1, so: 

 

|𝜓⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩ + 𝑒𝑥𝑝𝑖𝜑𝑠𝑖𝑛

𝜃

2
|1⟩                                       (3) 

 

𝜃 and 𝜑 are real numbers defined on a single three-dimensional space 
called the Bloch sphere. This space is shown in figure 9. The key point 
in quantum computers is that even though all computations can be done 
simultaneously on all states, they will collapse to one state if a 
measurement is done. As a result, at the moment of measurement, only  
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Figure 5. The results of proposed method for delta binary image: (a) 3% sampling, (b) 5% sampling, (c) 10% sampling, (d-f) output image before thresholding, (g) final 
image with Reconstruction Rate=93.09%, (h) final image with Reconstruction Rate=95.33%, (i) final image with Reconstruction Rate=96.96%. 
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Figure 6. The reconstruction accuracy diagram of ULEM, DS and the proposed 
method in different sampling percentages on the Wall-Stone image. 

 
Figure 7. The reconstruction accuracy diagram of ULEM, DS and the proposed 
method in different sampling percentages on the Ti-Channel image. 

 
Figure 8. Comparison of algorithm execution time ratio. 

 

one of  2n  states can be obtained. To solve this problem, the 
algorithms automatically increase the amplitude of the output state 
before measurement. These algorithms are known as amplitude 
amplification. 

A slightly more complex quantum system is the one which contains 

two qubits of information, represented as: 
 

𝛼|00⟩ + 𝛽|01⟩ + Υ|10⟩ + 𝛿|11⟩.                                      (4) 
 

In this system, tow qubits can store four states simultaneously. This 
storage capacity rises exponentially with an increase in the number of 
qubits. For example, 50 qubits can hold 250 ≈ 1015  states. According to 
the principles of quantum computing, a quantum CPU can operate 
simultaneously on all these states. This property is called natural 
parallelism. In the classical regime, with a linear increase in the number 
of processors, the computing power can also increase linearly. However, 
in the quantum regime, with a linear increase in the number of qubits, 
the computing power increases exponentially. 

Similar to classical digital circuits, there are unitary quantum gates 
represented in matrix form. These gates act on a qubit, and quantum 
algorithms consist of a set of these gates. Table 2 shows some of the most 
important single qubit gates along with the corresponding 
representation. The horizontal lines include a wire representing a qubit, 
and the symbols in the second column are a quantum gate acting on a 
qubit. For an input qubit  |𝜓⟩, the output will be 𝑈|𝜓⟩ . In Table 3, a 
number of conventional multi-qubit gates are shown along with the 
matrix representation. These gates affect several qubits. One of the most 
important quantum gates is the Hadamard gate, which is defined as 
follows: 

𝐻|𝑗⟩ = 2
−1

2 (|0⟩ + (−1)𝑗|1⟩)            𝑤𝑖𝑡ℎ  𝑗 = 0,1                            (5) 
 

 
Figure 9. Baloch space. 

 

Table 2. Single qubit gates. 

 
 
This gate plays an important role in quantum parallelism. One of the 

applications of this gate is to prepare the initial state. For example, if the 
initial state is  |00…0⟩⏟    

𝑛

 , by applying  𝑛 Hadamard gates, a superposition 

of states is created as follows: 
 

|𝜓𝑓⟩ = 𝛼0|00…0⟩ + 𝛼1|00…1⟩ + ⋯𝛼2𝑛|11…1⟩.                           (6) 
 

Among the most important quantum gates is CNOT, which is a 
conditional gate. If the condition qubit is 1, the NOT gate is applied to 



190 S. Kalantari et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 57-2 (2023) 183-19411-25 

 

the input. Also, the Swap gate swaps the value of the high qubit with 
that of the low qubit. The Toffoli gate also works like CNOT, but instead 
of one control bit, it has two control bits and the NOT gate operates on 
the third input when two control bits are 1. As in classical computation, 
quantum registers are needed to increase efficiency. A set of qubits form 
a quantum register. The difference between classical and quantum 
registers is that while a classical n-bit register can only store a single 
value of  2n possible states that occur with n  bits, a  n qubit register can 
store 2n  possible states created by n qubits. To compare classical and 
quantum processing power, imagine a classical 6-bit register that has 
26 = 64 different 6-bit words. A classical computer can process only one 
of these words at a time. To process 64 words simultaneously, we need 
64 processors in parallel. This is easy nowadays. However, to 
simultaneously process all the states (80-bit register), 1024 processors 
are needed; which s not available today. 

 
Table 3. Multi-qubit gates. 

 
 

At least in theory, it is possible to achieve a superposition of all 80 
qubit states. Assume that the Hadamard gate is applied to all the qubits 
of the register. So, we will have: 

 

𝐻⨂80 |0…00⟩⏟    
80 𝑞𝑢𝑏𝑖𝑡𝑠

≡
1

√280
(|0…00⟩⏟    

80 𝑞𝑢𝑏𝑖𝑡𝑠

+ |0…10⟩⏟    
80 𝑞𝑢𝑏𝑖𝑡𝑠

+ ⋯ |1…11⟩⏟    
80 𝑞𝑢𝑏𝑖𝑡𝑠

).                             (7) 

 

The above relationship has 1024  components. Based on quantum 
parallelism, any operation on this superposition state can be applied 
simultaneously to all states. In the classic regime, we will need 1024 
processors to do this. Therefore, by increasing the number of qubits, we 
will achieve a very high processing power. In order to use quantum  
 

computation in image processing, it is first necessary to display the 
image in the form of quantum states. In the field of quantum image 
processing, the FRQI and NEQR methods are used to display a gray 
level image with size 2n × 2n and gray range 2𝑞 . The NEQR method 
requires q + 2n qubits to store the information of a gray level image 
[23]. The quantum image in NEQR is shown as follows: 

 

|𝐼⟩ =
1

2𝑛
∑ ∑ |𝑓(𝑦, 𝑥)⟩|𝑦𝑥⟩2𝑛−1

𝑥=0
2𝑛−1
𝑦=0 =

                 
1

2𝑛
∑ ∑ |𝑐𝑦𝑥

𝑞−1
𝑐𝑦𝑥
𝑞−2

…𝑐𝑦𝑥
0 ⟩|𝑦𝑥⟩2𝑛−1

𝑥=0
2𝑛−1
𝑦=0                                       (8) 

 

In the above equation {𝑐𝑦𝑥
𝑞−1

, 𝑐𝑦𝑥
𝑞−2

, 𝑐𝑦𝑥
𝑞−3

…𝑐𝑦𝑥
0 } ∈ {0,1} 

and 𝑓(𝑦, 𝑥) ∈ {0,1, … , 2𝑞 − 1}. Compared to the other methods such as 
FRQI, this method causes quadratic speed-up in quantum image 
preparation and increases the compression ratio by about  1.5𝑥 . As 
mentioned, to use the inherent properties of quantum parallelism, the 
initial states are usually written as a superposition of the states. 
Therefore, in quantum image processing, the input images must be 
written in superposition form using the NEQR method. Figure 10 shows 
an example of NEQR representation for a 22 × 22 image. 

4. Comparison between quantum and classical methods 

In this part, the quantum version of the median filter will be described 
and compared with classical methods in terms of computational 
complexity. In the classical median filter, a fixed window size 3 × 3 
sweeps the entire image, and for each pixel of the noisy image, the 
median of the neighbors is placed in the center of the window. To 
perform the median filter at one point, the values of the pixels in the 
window are first sorted. Then, their median is determined and assigned 
to that pixel. Therefore, the logic of this filter is that the estimated pixels 
should be similar to their neighbors. To determine the median value of 
the pixels inside a window, the most common method is the Bubble sort 
[24]. However, this method has a high computational complexity. For 
this reason, in this article, as in reference [25], the following steps are 
performed on a window of the image. First, an ascending column sorting 
is performed. Row sorting, and finally right diagonal sorting will be 
carried out. These three steps used to determine the median of a window 
are called CRRD Sorting. An example of this median calculation method 
is shown in Figure 11. In the following, several basic modules, such as 
cycle-shift, swap, comparator, sort, and median calculation which are 
used in this article will be reviewed.

 

 
Figure 10. An example of 22 × 22 image in the NEQR representation. (The symbol ⊗ indicates the tensor product between states). 

 

 
Figure 11. An example of the median calculation method (CRRD Sorting). 

Operator Gate Matrix 

Controlled Not 

(Cnot,Cx) 
 

 

1
0

0
1

0 0
0 0

0 0 0 1
0 0 1 0

  

SAWP 

 

 

1
0

0
0

0 0
1 0

0 1 0 0
0 0 0 1

  

 

 

Toffoli 

(CCNOT,CCX, TOFF)  
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 

 
 
 
 
 
 
 

 

Table 3. Multi-qubit gates 

 1 

 

 

 

 

 

 

|𝐼⟩ =
1

4
(|10⟩⨂|0000⟩ + |100⟩⨂|0001⟩ + |150⟩⨂|0010⟩ + |240⟩⨂|0011⟩ +

|56⟩⨂|0100⟩ + |40⟩⨂|0101⟩ + |170⟩⨂|0110⟩ + |5⟩⨂|0111⟩ + |98⟩⨂|1000⟩ +

|65⟩⨂|1001⟩ + |78⟩⨂|1010⟩ + |120⟩⨂|1011⟩ + |89⟩⨂|1100⟩ + |240⟩⨂|1101⟩ +

|95⟩⨂|1110⟩ + |30⟩⨂|1111⟩) =
1

4
(|00001010⟩⨂|0000⟩ + |01100100⟩⨂|0001⟩ +

|10010110⟩⨂|0010⟩ + |11110000⟩⨂|0011⟩ + |00111000⟩⨂|0100⟩ +

|00101000⟩⨂|0101⟩ + |10101010⟩⨂|0110⟩ + |00000101⟩⨂|0111⟩ +

|01100010⟩⨂|1000⟩ + |01000001⟩⨂|1001⟩ + |01001110⟩⨂|1010⟩ +

|01111000⟩⨂|1011⟩ + |01011001⟩⨂|1100⟩ + |11110000⟩⨂|1101⟩ +

|01011111⟩⨂|1110⟩ + |00011110⟩⨂|1111⟩)  

Figure 10. An example of 22 × 22 image in the NEQR representation. (The symbol ⊗ indicates the tensor 

product between states). 

 1 
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Cycle-shift modules: In this article, Cycle-shift modules, as provided 
in reference [26], are used to shift the points of a window. Four cycle 
shift modules are used in the construction of the quantum median filter. 
They are displayed as 𝑠𝑦−, 𝑠𝑦+, 𝑠𝑥−, 𝑠𝑥+  and their operation are as 
follows: 
 

𝑠𝑦−(|𝑦⟩) = |(𝑦 − 1)   𝑚𝑜𝑑   2𝑛⟩ 
𝑠𝑦+(|𝑦⟩) = |(𝑦 + 1)   𝑚𝑜𝑑   2𝑛⟩ 
𝑠𝑥−(|𝑥⟩) = |(𝑥 − 1)   𝑚𝑜𝑑   2𝑛⟩ 
𝑠𝑥+(|𝑥⟩) = |(𝑥 + 1)   𝑚𝑜𝑑   2𝑛⟩ 

 
 

(9) 

 

The quantum circuits and an example of their operation are shown in 
figures 12 and 13. As shown, these gates cause the pixels to be translated 
by one unit. Therefore, according to the example presented in figure 13, 
by applying these modules to a window, the neighboring pixels can be 
obtained. We kindly refer readers to reference [26] for more 
information and details. 

Swap module: As indicated in [27], we used this module to swap two 
gray level values. According to figure 14, if this module is applied, the 
values of two gray levels |𝑥⟩ and |𝑦⟩ will be swapped with each other. 

Sort module: This module sorts three input integers in a descending 
order. It consists of three comparators and three Swap modules. Figure 
15 shows an example of sort-out of three integers |𝑥⟩, |𝑦⟩ and |𝑧⟩ based 
on the presented method (figure 11) at the beginning of section 4. In this 
module, three comparisons must be made. First, |𝑥⟩  and |𝑦⟩  are 
compared with each other using the comparator module. If  𝑒1𝑒0 = 01 
(that is |𝑥⟩ > |𝑦⟩), then |𝑥⟩ and |𝑦⟩ will be replaced by Swap module, 
otherwise there will be no change. After this step, similar to the previous 
steps, |𝑥⟩ is compared with |𝑧⟩, and |𝑦⟩ is compared with |𝑧⟩, and finally 
the sorted output will be |𝑥′⟩, |𝑦′⟩ and |𝑧′⟩. 

Median module: According to figure 16 and the CRRD Sorting 
method, we will need seven sort modules to determine the median of a 
3 × 3 window. 

Quantum median filtering implementation and computational 
complexity analysis: The complete quantum median filtering circuit 
presented in this article is shown in figure 17. In the quantum median 
filter, eight separate images are first created using translation by one unit 
(up, down, left, right, up right, up left, down right and down left) from 
the original image. Similar to figure 13, this is done using cycle shift 
modules. This step is known as the Preparation Module. As for the nine 
images (eight images created in the previous step in addition to the main 
image), the median of the nine pixels in each (𝑥, 𝑦) is calculated. This 
step is equivalent to sweeping the window over the entire image in the 
classical median filter. 

 

 
Figure 12. The cycle shift modules with the corresponding function and circuit. 

 
 

Figure 13. An example of the effects of the Cycle Shift module on an image window. 

 
Figure 14. The swap module. 

 

Since the NEQR model displays the image as a superposition of states, 
and due to the property of quantum parallelization, the median of all 
pixels is calculated simultaneously. To analyze the computational 
complexity of the quantum algorithm, the number of conventional gates 
used in each module should be first determined. Then, the different 
terms are added together to get the computational complexity of the 
whole algorithm. As shown in figure 17, the quantum median filter of 
this article consists of four different modules. According to reference 
[25], the image preparation module consists of ten cycle shifts and nine 
C-NOT; therefore, the complexity of this module will be 𝑂(10𝑛2 +
9𝑞).The median module also consists of seven sort modules as shown in 
figure 16. Also, according to figure 15, the sort module consists of three 
comparators and three swap modules. According to reference [28], the 
total complexity of this module is equal to 𝑂(21𝑞2 + 63𝑞). Also, based 
on the analysis done in reference [28], the complexity of Comparator 
module is equal to 𝑂(𝑞2). As shown in figure 14, The swap module can 
be divided into three C-NOT gates. Thus, its complexity is 𝑂(3𝑞) . 
Ultimately, the computational complexity of the entire quantum 
algorithm is equal to O (10 𝑛2 + 9 𝑞 + 21 𝑞2 + 63𝑞 + 𝑞2 + 3 𝑞) =
𝑂(10 𝑛2 + 22 𝑞2 + 75 𝑞) which shows a comparable superiority over 
the classical version of the median filter. Since in the classical mode, the 
median value should be calculated for all points of the 2𝑛 × 2𝑛 image, 
the computational complexity is the order of O(22𝑛

). As a result, the 
computational complexity of the quantum median filter is improved by 
a polynomial order compared to its classical version., The idea of using 
the quantum median filter in image reconstruction, especially in high-
dimensional images, has led to a significant reduction in the 
computational complexity. Therefore, in this part, a quantum median 
filter was implemented in reconstructing geological images. The steps of 
the proposed method are shown in figure 18. In the preprocessing stage, 
all the NAN points are first filled with salt and pepper noise. Then, using 
NEQR, the classical image is transformed into a quantum image (Classic 
to Quantum). In the next step, using cycle shift modules, 3 × 3 windows 
are extracted from the image. Then, using the median module, the 
median of the pixels in the window is calculated. In the next step, the 
central pixel is compared with the values of 0 and 255. If the central pixel 
is equal to either of these values (0 to 255), it will be replaced by the 
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median, otherwise the value of that pixel will not change. Finally, the 
reconstructed quantum image can be displayed in the form of a classical 
image using measurements (Quantum to Classic). Since we did not have 
access to a real quantum computer, all simulations were performed on 
a classical computer with a Corei7, 6GB RAM, and on MATLAB 2016 
specifications. Also, for this reason, we did not report the execution time 
in this section. The reconstruction results of the proposed quantum 
median filter and DS method are shown in figure 19. It should be noted 
that, in this section, a simplified version of the quantum median filter 
was used for reconstructing geological images, and, the percentage of 
sampling is slightly higher than that of classical method presented in 

section 2. According to the results presented in figure 19, the 
reconstruction accuracy of the quantum median filter is acceptable 
compared to the DS in terms of quality. Also, according to the analysis 
done in this research, the complexity of the quantum median filter is 
𝑂(𝑛2), while the computational complexity of the DS is 𝑂(24𝑛𝑚2). It is 
worth mentioning that if the quantum median filter algorithm 
presented in this article is implemented on a real quantum computer, its 
execution speed will be exponentially faster than the DS method. The 
results obtained and the analysis done on computational complexity in 
this section show that quantum computing can be applied to other 
geological applications as well. 

 

 

 

 
Figure 15. The sort module. 

 

 
 

Figure 16. The median calculation module. 

 
Figure 17. Complete quantum median filtering circuit. 
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Figure 18. Schematic of quantum median filter. 

 

 

 
Figure 19. The Results of quantum median filter for the Wall-Stone and Delta binary image: (a) 20% sampling, (b) 8% sampling, (c) final image for Quantum Median 
Filter (Reconstruction Rate=92.50%), (d) final image for Quantum Median Filter (Reconstruction Rate=93.15%), (e) final Image for DS (Reconstruction Rate=80.53%),(f) 
final image for Ds (Reconstruction Rate=83.35%). 

 

5. Conclusion 

In this article, a geological image reconstruction method based on 
classical median and average filter was first presented. One of the 
advantages of this method is that it does not need training images. This 
method is much faster compared to the other methods, due to its use of 
median and means to estimate pixels. Also, selecting the window size 
adaptively in the proposed algorithm causes the estimated data to be 
similar to the original image. According to the results, it has high 
accuracy as well. The purpose of this study was to introduce the 
potential of quantum computing to the field of geosciences so that the 
researchers of this field can become more familiar with this computing 
method. When quantum computers become widespread, these 
researchers can benefit from their useful properties, one of which is the 
reduction of computing complexity. Therefore, in the second part of this 
article, quantum computing was briefly introduced and a quantum 
median filter was proposed for geological image reconstruction. The 
quantum median filter presented in this article was tested on two 
geological images, and its results were compared with the DS method. 
The results proved that the use of quantum computing in various 
geological problems can lead to higher efficiency of algorithms in terms 
of computational complexity. 

Code availability section 

Reconstruction-with-Spatial-Filter 
Contact: sadeghkalantari@tafreshu.ac.ir  
Software required: Matlab 2016 
The source codes are available for downloading at the link: 

https://github.com/sadeghkalantari/Reconstruction-with-Spatial-
Filter.git 
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