[1] Li, Y., Oldenburg, D.W., 1998. 3-D inversion of gravity data. Geophysics 63, 109–119.
[2] Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.
[3] Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, Inc.
[4] Cella, F., & Fedi, M. (2012). Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting, 60(2), 313-336.
[5] Abedi, M., Gholami, A., Norouzi, G.H., 2014. 3D inversion of magnetic data seeking sharp boundaries: a case study for a porphyry copper deposit from now Chun in Central Iran. Near Surf. Geophys. 2, 657–666.
[6] Abedi, M., 2019. AIRRLS: an augmented iteratively re-weighted and refined least squares algorithm for inverse modeling of magnetometry data. J. Geol. Res. 3 (1), 16–27.
[7] Essa, K.S., Elhussein, M., 2017. A new approach for the interpretation of magnetic data by a 2-D dipping dike. J. Appl. Geophys. 136, 431–443.
[8] Biswas, A., 2020. Interpretation of gravity anomaly over 2D vertical and horizontal thin sheet with finite length and width. Acta Geophys. 68, 1083–1096.
[9] Zhang, Y., Yan, J., Li, F., Chen, C., Mei, B., Jin, S., Dohm, J.H., 2015. A new bound constraints method for 3D potential field data inversion using Lagrangian multipliers. Geophys. J. Int. 201, 267–275.
[10] Yang, M., Wang, W., Kim Welford, J., Farquharson, C.G., 2019. 3D gravity inversion with optimized mesh based on edge and center anomaly detection. Geophysics 84 (3), G13–G23.
[11] Li, Y., Oldenburg, D.W., 2003. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int. 152, 251–265.
[12] Leli`evre, P.G., Oldenburg, D.W., Williams, N., 2009. Integrating geological and geophysical data through advanced constrained inversions. Explor. Geophys. 40 (4), 334–341.
[13] Fournier, D., Oldenburg, D.W., 2019. Inversion using spatially variable mixed ℓp norms. Geophys. J. Int. 218 (1), 268–282.
[14] Portniaguine, O., Zhdanov, M.S., 2002. 3D magnetic inversion with data compression and image focusing. Geophysics 67, 1532–1541.
[15] Jahandari, H., & Farquharson, C. G. (2015). Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials. Geophysical Journal International,
202(3), 1859-1876.
[16] Jahandari, H., Ansari, S.M., Farquharson, C.G., 2017. Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids. J. Appl. Geophys. 138, 185–197.
[17] Liu, S., Hu, X., Xi, Y., Liu, T., 2015a. 2D inverse modeling for potential fields on rugged observation surface using constrained Delaunay triangulation. Comput. Geosci. 76, 18–30.
[18] Singh, A., 2020. Triangular grid-based fuzzy cross-update inversion of gravity data: case studies from mineral exploration. Nat. Resour. Res. 29, 459–471.
[19] Baranwal, V.C., Franke, A., Borner, R.U., Spitzer, K., 2011. Unstructured grid based 2-D inversion of VLF data for models including topography. J. Appl. Geophys. 75, 363–372.
[20] Darijani, M., Farquharson, C.G., Leli`evre, P.G., 2020. Clustering and constrained inversion of seismic refraction and gravity data for overburden stripping: application to uranium exploration in the Athabasca Basin, Canada. Geophysics 85 (4), B133–B146.
[21] Cai, Y., & Wang, C. Y. (2005). Fast finite-element calculation of gravity anomaly in complex geological regions. Geophysical Journal International, 162(3), 696-708.
[22] Key, K., & Ovall, J. (2011). A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophysical Journal International, 186(1), 137-154.
[23] Jahandari, H., & Farquharson, C. G. (2013). Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids. Geophysics, 78(3), G69-G80.
[24] Kim, G. S., Ryu, J. C., Sin, O. C., Han, J. S., & Kim, S. G. (2014). Body-growth inversion of magnetic data with the use of non-rectangular grid. Journal of Applied Geophysics, 102, 47-61.
[25] Gross, L., Altinay, C., & Shaw, S. (2015). Inversion of potential field data using the finite element method on parallel computers. Computers & geosciences, 84, 61-71.
[26] Roussel, C., Verdun, J., Cali, J., & Masson, F. (2015). Complete gravity field of an ellipsoidal prism by Gauss–Legendre quadrature. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 2220-2236.
[27] Schaa, R., Gross, L., & Du Plessis, J. (2016). PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics. Journal of Geophysics and Engineering, 13(2), S59-S73.
[28] Li, J., Lu, X., Farquharson, C. G., & Hu, X. (2018). A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources. Geophysics, 83(3), E117-E132.
[29] Uwiduhaye, J. D. A., Mizunaga, H., & Saibi, H. (2019). A case history: 3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda. Arabian Journal of Geosciences, 12(3), 86.
[30] Codd, A. L., Gross, L., & Aitken, A. (2021). Fast multi-resolution 3D inversion of potential fields with application to high-resolution gravity and magnetic anomaly data from the Eastern Goldfields in Western Australia. Computers & Geosciences, 157, 104941.
[31] Toushmalani, R., & Saibi, H. (2015). Fast 3D inversion of gravity data using Lanczos bidiagonalization method. Arabian Journal of Geosciences, 8(7), 4969-4981.
[32] Rezaie, M., Moradzadeh, A., & Kalateh, A. N. (2017). Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization. Journal of Applied Geophysics, 136, 42-50.
[33] Tikhonov, A. N., & Arsenin, V. I. (1977). Solutions of ill-posed problems (Vol. 14).
[34] Martin, R., Monteiller, V., Komatitsch, D., Perrouty, S., Jessell, M., Bonvalot, S., & Lindsay, M. (2013). Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana. Geophysical Journal International, 195(3), 1594-1619.
[35] Kim, Kang-sop, Hu, Xiang-yun, et al., 2009. Study on isoparametric finite-element integral algorithm of gravity and magnetic anomaly for body with complex shape. Oil Geophys. Prospect. 44 (2), 231–239 (in Chinese).
[36] Pilkington, M. (1997). 3-D magnetic imaging using conjugate gradients. Geophysics, 62(4), 1132-1142.
[37] Meng, Z., Li, F., Xu, X., Huang, D., & Zhang, D. (2017). Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm. Exploration Geophysics, 48(3), 294-304.
[38] Moradzadeh, A. (1998). Electrical imaging of the Adelaide geosyncline using magnetotellurics (MT) (Doctoral dissertation, Flinders University of South Australia).
[39] Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problems (Vol. 36). Elsevier.
[40] Abedi, M. (2022). Cooperative fuzzy‑guided focused inversion for unstructured mesh modeling of potential feld geophysics, a case study for imaging an oil‑trapping structure. Acta Geophysica, doi.org/10.1007/s11600-022-00857-w.
[41] Danaei, K., Moradzadeh, A., Norouzi, G. H., Smith, R., Abedi, M., & Fam, H. J. A. (2022). 3D inversion of gravity data with unstructured mesh and least-squares QR-factorization (LSQR). Journal of Applied Geophysics, 206, 104781.
[42] Abedi, M., Gholami, A., Norouzi, G. H., & Fathianpour, N. (2013). Fast inversion of magnetic data using Lanczos bidiagonalization method. Journal of Applied Geophysics, 90, 126-137.
[43] Daliran, F., Stosch, H.G., Williams, P., 2010. Lower Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, east-Central Iran. In: Corriveau, L., Mumin, A.H. (Eds.), Exploring for Iron Oxide Copper-Gold Deposits. Canada and Global Analogues. Geological Society of Canada Short Course Notes 20, St. John’s, Newfoundland Canada, pp. 147–159.
[44] Nabatian, Gh., Rastad, E., Neubauer, F., Honarmand, M., Ghaderi, M., 2015. Iron and FeMn mineralisation in Iran: implications for Tethyan metallogeny. Aust. J. Earth Sci.
62, 211–241.
[45] Alamdar, K., 2016a. Interpretation of the magnetic data from Shavaz iron ore using
enhanced local wavenumber (ELW) and comparison with Euler deconvolution method. Arab. J. Geosci. 9, 597.
[46] Alamdar, K., 2016b. Development of the gradient ratio method for depth estimation of the subsurface bodies using Bouguer gravity map data. J. Res. Appl. Geophys. 1 (2), 131–141.
[47] Rahimi, E. (2018), Depth estimation of the potential field data using wavelet transform, (case study: gravity and magnetic data from Shavaz iron ore mine in Yazd). M.Sc. thesis (in Persian), Department of Mining & Metallurgical Engineering, Yazd University, Iran.
[48] Abedi, M. (2020). A focused and constrained 2D inversion of potential field geophysical data through Delaunay triangulation, a case study for iron-bearing targeting at the Shavaz deposit in Iran. Physics of the Earth and Planetary Interiors 309, 106604.