
 

 

* Corresponding author: E-mail address:: a_moradzadeh@ut.ac.ir (A.i Moradzadeh). 
Journal Homepage: ijmge.ut.ac.ir 

 
 

IJMGE 57-1 (2023) 89-99 DOI:  10.22059/IJMGE.2023.351885.595004 

 3D inversion of magnetic data using Lanczos bidiagonalization and 
unstructured element 

Khatereh Danaei a , Ali Moradzadeh a, *, Gholam-Hossain Norouzi a and Maysam Abedi a 
a School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran. 
 

 

A B S T R A C T 

 

This work presents an algorithm to construct a 3D magnetic susceptibility property from magnetic geophysical data. Physical model 
discretization has substantial impact on accurate inverse modeling of the sought sources in potential field geophysics, where structural 
meshing suffers from edge preserving of complex-shaped geological sources. In potential field geophysics, a finite-element (FE) methodology 
is usually employed to discretize the desired physical model domain through an unstructured mesh. The forward operator is calculated 
through a Gauss-Legendre quadrature technique rather than an analytic equation. To stabilize mathematical procedure of inverse modeling 
and cope with the intrinsic non-uniqueness arising from magnetometry data modeling, regularization is often implemented by utilizing a 
norm-based Tikhonov cost function. A so-called fast technique, “Lanczos Bidiagonalization (LB) algorithm”, can be utilized to solve the central 
system of equations derived from optimizing the function, where it decreases the execution time of the inverse problem by replacing the 
forward matrix with a lower dimension one. In addition, to obtain best regularization parameter, a weighted generalized cross-validation 
(WGCV) curve is plotted, that makes a balance between misfit norm and model norm introduced in the cost function. In order to tackle the 
normal propensity of physical structures to focus at the shallow depth, an expression of depth weighting is used. This procedure is applied to 
a synthetic scenario presenting a complex-shaped geometry along with a real set of magnetic data in central part of Iran. So the capability of 
the proposed algorithm for inversion indicates the accuracy of the inversion algorithm. Additionally, the modeling results pertaining to a field 
case study are in good agreement with the drilling data. 
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1. Introduction 

The magnetic technique has wide usage including hydrocarbon and 
mineral prospecting, tectonic structure identification, along with 
environmental and engineering investigations. For imaging physical 
properties of a target, inversion of geophysics data has a significant role 
[1], wherein the physical features of subsurface are obtained linearly or 
non-linearly from geophysical data [2]. To understand the physics of the 
source, inversion utilizes a set of mathematical procedures to estimate 
sought physical model [3]. Some prior information about the searched 
model, and many geological/geophysical data are often required to 
control the intrinsic non-uniqueness arising from geophysical data 
inversion [4, 5]. An inverse problem is generally divided into two parts: 
element-based physical property modeling, and simple-shaped 
parametric modeling of sought sources [6]. 

From geophysical point of view, the main application of parametric 
methods on geophysics data is in simple-body geometries that, mainly 
through interaction of computers and humans, the best parameters of 
shape are obtained with regards to the rough body [7, 8]. Especially 
when the rough geometry is close to the simple form, geophysical data 
will give out good results. It is worth pointing out that less time needed 
to apply this type of process. In the case of targets with complicated 
forms, when applying the parametric inversion, no sufficient 
information would be available. Therefore, a divided subsurface is 
necessary to obtain physical properties. As we know, iterative method is 
hard and takes a lot of time but in the case of complex-shaped 
geometries is very useful. Note that the rough body in both approaches  

 
 
assume there is physical contrast in the geological setting [9]. 

To tackle non-unique response, the cell-based minimum-structure 
approach is used. However, this inversion approach, that includes many 
unknown factors, requires a lot of time [10]. Note that imaging the 
complicated geology structures is an important process in geophysics to 
obtain susceptibility and density properties. Li and Oldenburg (1998, 
2003) used some techniques for the inversion, such as a new 
regularization method, to obtain correctly the geometry of a sought 
body by minimizing an objective function, including a model stabilizer 
and a misfit. Also, optimizing the speed of calculations is an attractive 
idea in the field of geophysics. In all methodologies, addition of drilling 
information and geological observation has significant impact on 
correct recovering of the sough target [12]. An LP-norm cost function is 
regularized to solve the linear model in the geophysical method [13], 
where the rate of robustness and convergence increases by using a 
weighted parameter in iterative inversion procedure [14]. 

Geophysicists are attentive in the simpler gravity and magnetic 
forward modeling and utilizing the structural mesh subdivisions. 
Although in complicated topography and geology, the quadrature 
element is suitable. So, to recreate any rough body and topography and 
make a suitable valuation of geology forms, unstructured meshes with 
less elements are used in the current research work in this field [15, 16]. 
Triangular/tetrahedron meshing through the Delaunay rule is a new 
technique and is a popular approach for physical model discretization 
[17, 18]. So, to get a proper body with complex geometry and rough 

Article History: 
Received: 30 November 2022. 
Revised: 01 January 2023. 
Accepted: 06 January 2023.. 
 

- R E S E A R C H    P A P E R - 

https://ijmge.ut.ac.ir/
https://10.0.86.43/IJMGE.2023.351885.595004
https://10.0.86.43/IJMGE.2023.351885.595004


90 K. Danaei et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 57-1 (2023) 89-99 

 

topography, non-structured grid is extensively used [17, 19, 20]. 
To integrate isoperimetric elements in this research, Gauss-Legendre 

quadrature is used. Also, other methods of finite element (FE) such as 
structured (Cai and Wang., 2005) and unstructured mesh were applied 
[21, 22]. Note that Gauss-Legendre quadrature in irregular elements has 
been shown useful for 2D magnetotelluric (MT) and 2.5D controlled-
source electromagnetic (CSEM) modeling in complex structures and 
topography. In another work of Delaunay tetrahedral elements, 
irregular mesh was used on the gravity data [23]. They pointed out, the 
finite element method is more correct even though it requires more 
computational power. Also, non-rectangular mesh, in body-growth 
technique was used by Kim et al (2014) for inversion of magnetic data 
[24]. Moreover, Gross et al (2015) used the finite element procedure in 
inversion of geophysical data on parallel systems [25]. Roussel et al 
(2015) computed the gravity gradient method and compared numerical 
and analytical systems for simple shapes. Then Gauss-Legendre 
quadrature with ellipsoidal cells were used by them to evaluate the 
gravity anomaly [26]. In the other work, in inverse and forward 
problem, for answering partial differential expressions, the FE method 
was used by Schaa et al (2016) with constraint border settings [27]. Li 
et al (2018) used a finite element time-domain (FETD) electromagnetic 
forward method for a complicated body transmitting loop, where an 
irregular tetrahedral grid was used in the total-field algorithm [28]. 
Furthermore, Uwiduhaye et al (2019) estimated the density property of 
gravity anomaly by hexahedral meshes with Gauss-Legendre integration 
in a geothermal survey [29]. Finally Codd et al (2021) proposed a fast 
inversion process for gravity or magnetic data, based on a finite element 
technique discretization  by unstructured tetrahedral meshes [30]. 

In addition, a quick procedure that is called the least-squares QR 
(LSQR) technique is used to decrease the calculation time and it is like 
the core of the LSQR method (Lanczos bidiagonalization “LB”). This 
solver is better in respect with direct method as conjugate gradient (CG) 
systems [31, 32]. So, in order to save the basic vectors, the LB method is 
suitable because it uses less memory and smaller dimensions of the 
matrix in the computation. An important difficulty in geophysics 
modeling is the ill-posed problem of the equations to be solved. That 
causes non-uniqueness outcomes. So, in order to stabilize the obtained 
response and minimize the objective function, Tikhonov and Arsenin 
(1977) used regularization via the objective function including a model 
norm and a misfit. To reach this goal, a suitable regularization parameter 
that causes an ideal balance between model norm and the misfit should 
be chosen. As the resulting model of the Tikhonov regularization is 
usually smooth, a depth weighting factor in the objective inversion 
function is inserted to obtain the best result in the depth [33]. 

As mentioned, many types of inversion techniques are used by 
researchers to obtain precious outcomes. In order to solve the inverse 
models, the subsurface is divided to regular and irregular elements in 
various 3D systems. The review of the aforementioned published papers 
indicates that, none of them has described obviously how the equations 
of the irregular element is set together in 3D magnetic data inversion. 
Thus, to model the magnetic data accurately using unstructured FE 
elements, an inversion system is presented in this paper. Mesh 
generation is planned with TetGen package in MATLAB. Also, the LB 
technique used to accelerate the running process of the inversion. 

The following parts of this paper are presented as bellow. Part 2 
explains the principle of FE on forward modeling and application of the 
LSQR technique in inversion process. Part 3 discusses the efficacy of the 
proposed 3D magnetic inversion method by applying on synthetic 
model. In Part 4, geophysical survey, geological setting and inversion of 
real magnetic data of Yazd area, are explained as a case study. Finally, 
the study finishes with an outcomes part. 

2. Material and methods 

The proposed technique is used to perform with unknown 
susceptibility in any irregular subsurface hexahedral meshes. So, the 
inversion procedure is explained in the following part. In inversion 
process, the physical properties of the subsurface model are related to 

the observed magnetic data by a linear set of equations [34]. In the next 
two sections, the way of expressing the forward modeling with the FE 
method for an irregular mesh and also the process of solving the system 
of linear equations with the LSQR method are concisely described. 

2.1. Forward modeling 

For defining a complex-shaped topography and geological model, 
structured mesh discretization is an obstacle. Therefore, for attacking 
these matters the irregular mesh is a remedy. The exact outcomes on the 
rough topographical data are possible to attain via one of the aspects of 
the mesh. There are two main features in using the unstructured mesh: 
(1) through reducing the number of model parameters, the size of 
inverse problem decreases; and (2) the capability to correctly display 
any rough surfaces. Here, the subsurface model is divided to irregular 
meshes with several magnetic susceptibility. To calculate the physical 
property, an analytical solution could be obtained in a special cell with 
a unique property [18]. 

In this study, in regard to irregular division in the forward process, it 
is supposed that physical properties in each cell is homogenous. The 
subsurface discretized to cells and the magnetic anomaly of individual 
mesh are calculated as follow, then can be added to compute the data at 
each point, 𝑖,  as [2]: 

 

di = ∑ Aij𝑘j
m
j=1 , i = 1,… , n                                                                    (1) 

 

where Aij is the kernel that relates the magnetism at the observation 
𝑖 to the cell 𝑗 , ‘k’ stands for the subsurface meshes with magnetic 
susceptibility contrast (κj), n represents the number of observation data 
and ‘di’ is the magnetic anomaly. Figure 1 shows the procedure of the 
subsurface area discretization to the irregular hexahedron cells and 
converting four of them to a tetrahedral mesh by TetGen package. 

 

 

 

Figure 1. (a) The local coordinate axis (x',y',z') of an irregular hexahedron, and (b) 
a tetrahedral shape created by 4 hexahedral elements. 

It is expected that the noise, 𝑒𝑖 related with each observed data has a 
Gaussian distribution and is uncorrelated with each other. So, the 
observed data is shown by matrix as: 

 

𝑑𝑜𝑏𝑠 = di + 𝑒𝑖 ,                                                                                          (2) 
 

where 𝑒𝑖 ∈ Rn is the noise in the ith observation data. The Aij is the 
kernel matrix, as [24], 

(a) 

(b) 

https://www.sciencedirect.com/topics/computer-science/finite-element-method
https://www.sciencedirect.com/topics/computer-science/finite-element-method
https://www.sciencedirect.com/topics/computer-science/discretization
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Aij =  𝑘
4π

 

∫ [
(2Sx−Sy−Sz)X

2+(2Sy−Sx−Sz)Y
2+(2Sz−Sy−Sx)Z

2+3(SxyXY+SyzYZ+SzxZX)

(X2+Y2+Z2)5 2⁄ ]
 

Vj
dV                     (3) 

 

Here X = x−xi, Y = y− yi, Z = z− zi in which xi, yi, zi and x, y, z 
respectively are coordinate location of the observation and the vertices 
of cells, also vj is the volume of jth mesh. The coefficients Sx, Sy, Sz, Sxy, 
Syz and Szx are given below respectively: 

 

Sx = KxHx ,                 Sy = KyHy ,                Sz = KzHz    
Sxy = KxHy + KyHx , Syz = KyHz + KzHy , Szx = KzHx + KxHz   

Hx = cosDm cos Im , Hy = sinDm cos Im , Hz = sin Im  
Kx = cosDf cos If  ,           Ky = sinDf cos If  ,   Kz = sin If   
 

The integral in Eq. (3) is calculated by a Gauss-Legendre quadrature 
method. Because of the logarithm and arctangent expressions in forward 
modeling particularly on the non-rectangular meshes, forward modeling 
is taken more time in analytical procedures. It is important to note that 
the Gaussian–Legendre procedure is more accurate than other 
numerical methods such as Romberg or trapezoidal integration. Thus, 
we used the following 3D Gauss–Legendre integration to estimate Eq. 
(3) like the procedure of Kim et al. (2009), 

 

∫ ∫ ∫ 𝑓(𝑥′, 𝑦′, 𝑧′)𝑑𝑥′𝑑𝑦′𝑑𝑧′ =
1

−1

1

−1

1

−1

                         ∑ 𝑤𝑜
𝑏
𝑜=1 ∑ 𝑤𝑎

𝑏
𝑎=1 ∑ 𝑤𝑡

𝑏
𝑡=1 𝑓(𝑥𝑜

′ , 𝑦𝑎
′ , 𝑧𝑡

′),                                  (4) 
 

where ‘b’ is the number of points in Eq. (3) and f is the integrand, 
which the ‘f’ calculates in the local coordinates; 𝑥𝑜′ , 𝑦𝑎′ , 𝑧𝑡′ are the local 
coordinates system. Furthermore, in the global coordinate structure, 
𝑤𝑜 , 𝑤𝑎 , 𝑤𝑡 are the weight factors of the oth, ath, tth subdivision on the X, 
Y, Z axis. Now, for example, for b = 4, the 𝑤𝑜 weight constants of Gauss–
Legendre value and the values of coordinates 𝑥𝑜′  are given in Table 1. 

 

Table 1: The weight coefficients and coordinates of Gauss–Legendre basis for b=4 
(Kim et al., 2009). 

b 𝒙𝒐
′  𝐰𝐨 

 
 

4 

0.8611363115940533 0.347854845137454 
-0.8611363115940533 0.347854845137454 
0.339981043584856 0.652145154862525 
-0. 339981043584856 0.652145154862525 

 

Therefore, for the irregular mesh, the kernel is [24]: 
 

Aij =
𝑘

4π
∑ wp
b
p=1 ∑ wq

b
q=1 ∑ wr

b
r=1 Dpqr                                                            (5) 

 

where the term Dpqr is: 
 

Dpqr =
(2Sx−Sy−Sz)X

2+(2Sy−Sx−Sz)Y
2+(2Sz−Sy−Sx)Z

2+3(SxyXY+SyzYZ+SzxZX)

(X2+Y2+Z2)5 2⁄
Vpqr       (6) 

 

and Vpqr is the Jacobian matrix that is explained by Eq. (9). Also, x, y, 
z could be put at expression of the local coordinates system (𝑥𝑜′ , 𝑦𝑎′ , 𝑧𝑡′), 
as 

 

𝑥 = ∑ 𝐽𝑐𝑥𝑐
8
𝑐=1 ,    𝑦 = ∑ 𝐽𝑐𝑦𝑐

8
𝑐=1 ,    𝑧 = ∑ 𝐽𝑐𝑧𝑐

8
𝑐=1                                       (7) 

 

𝐽𝑐 is a shape function that is explained in Eq. (8) and local coordinates 
of vertices 𝑥𝑐′ , 𝑦𝑐′, 𝑧𝑐′  (c = 1, ⋯, 8) are shown in Table 2 [35]: 

 

𝐽𝑐(𝑥′, 𝑦′, 𝑧′) =
1

8
(1 + 𝑥′𝑥𝑐

′)(1 + 𝑦′𝑦𝑐
′)(1 + 𝑧′𝑧𝑐

′),   𝑐 = 1, … ,8               (8) 
 

The determinant of the Jacobian matrix, explains Vpqr in Eq. (6) so: 
 

𝑉(𝑥′, 𝑦′, 𝑧′) = det 

(

 
 

𝜕𝑥

𝜕𝑥′

𝜕𝑦

𝜕𝑥′

𝜕𝑧

𝜕𝑥′
𝜕𝑥

𝜕𝑦′

𝜕𝑦

𝜕𝑦′

𝜕𝑧

𝜕𝑦′

𝜕𝑥

𝜕𝑧′

𝜕𝑦

𝜕𝑧′

𝜕𝑧

𝜕𝑧′)

 
 

                                                                        (9) 

 

So, by differentiating Eq. (7), the components of matrix (9) are: 
 

𝜕𝑥

𝜕𝑥′
= ∑

𝜕𝐽𝑐

𝜕𝑥′
8
𝑐=1 𝑥𝑐 ,   

𝜕𝑦

𝜕𝑥′
= ∑

𝜕𝐽𝑐

𝜕𝑥′
8
𝑐=1 𝑦𝑐 ,   

𝜕𝑧

𝜕𝑥′
= ∑

𝜕𝐽𝑐

𝜕𝑥′
8
𝑐=1 𝑧𝑐  ,   

𝜕𝑥

𝜕𝑦′
= ∑

𝜕𝐽𝑐

𝜕𝑦′
8
𝑐=1 𝑥𝑐 ,

𝜕𝑦

𝜕𝑦′
= ∑

𝜕𝐽𝑐

𝜕𝑦′
8
𝑐=1 𝑦𝑐  ,

𝜕𝑍

𝜕𝑦′
= ∑

𝜕𝐽𝑐

𝜕𝑦′
8
𝑐=1 𝑧𝑐 ,   ,

𝜕𝑥

𝜕𝑧′
= ∑

𝜕𝐽𝑐

𝜕𝑧′
8
𝑐=1 𝑥𝑐 ,   

𝜕𝑦

𝜕𝑧′
= ∑

𝜕𝐽𝑐

𝜕𝑧′
8
𝑐=1 𝑦𝑐 ,    

  
𝜕𝑍

𝜕𝑧′
= ∑

𝜕𝐽𝑐

𝜕𝑧′

8
𝑐=1 𝑧𝑐                                                                                                         (10) 

Table 2: In the local coordinates systems, Apices of the hexahedral cell is displayed 
in Fig. 1a (Kim et al. 2009). 

L 1 2 3 4 5 6 7 8 

𝒙𝒄
′  -1 1 -1 1 -1 1 -1 1 

𝒚𝒄
′  -1 -1 1 1 -1 -1 1 1 

𝒛𝒄
′  -1 -1 -1 -1 1 1 1 1 

 

Thus, by differentiating Eq. (8), the derivatives of shape functions are 
obtained [35]: 

 

∂𝐽𝑐

∂𝑥′
=
𝑥𝑐
′

8
(1 + 𝑦′𝑦𝑐

′
)(1 + 𝑧′𝑧𝑐

′
),

∂𝐽𝑐

𝜕𝑦′
=
𝑦𝑐
′

8
(1 + 𝑥′𝑥𝑐

′
)(1 + 𝑧′𝑧𝑐

′
) ,

∂𝐽𝑐

𝜕𝑧′
=  

𝑧𝑐
′

8
(1 + 𝑥′𝑥𝑐

′)(1 + 𝑦′𝑦𝑐
′)                                                                                                          (11) 

 

𝑃(𝑥′, 𝑦′, 𝑧′) = (
𝜕𝑥

𝜕𝑥′
×
𝜕𝑦

𝜕𝑦′
×
𝜕𝑧

𝜕𝑧′
) + (

𝜕𝑥

𝜕𝑦′
×
𝜕𝑦

𝜕𝑧′
× 

𝜕𝑧

𝜕𝑥′
) + (

𝜕𝑥

𝜕𝑧′
×
𝜕𝑦

𝜕𝑥′
×

𝜕𝑧

𝜕𝑦′
) −

                                (
𝜕𝑧

𝜕𝑥′
×
𝜕𝑦

𝜕𝑦′
×
𝜕𝑥

𝜕𝑧′
) − (

𝜕𝑧

𝜕𝑦′
×
𝜕𝑦

𝜕𝑧′
×
𝜕𝑥

𝜕𝑥′
) − (

𝜕𝑧

𝜕𝑧′
×
𝜕𝑦

𝜕𝑥′
×
𝜕𝑥

𝜕𝑦′
)                 

2.2. The LSQR algorithm for inversion 

The valuation of the magnetic susceptibility is the goal of inversion 
for the subsurface structure. The outcome of inversion is usually non-
unique, unstable and ill-posed. So, to get the best answers, the Tikhonov 
cost function must be minimized [1]: 

 

δ(𝑘) = δ𝑑(𝑘) + α δ𝑚(k)                                                                                      (12) 
 

Here α is a regularization term that balances model misfit function, 
δ𝑑(𝑘),   and model norm  , δ𝑚(𝑘), during minimizing of the δ(𝑘), 
 objective function for inversion of the observed data. This equation can 
be written as: 

 

δ(𝑘) = ‖𝑤𝑓(𝐴𝑘 − 𝑑)‖2
2
+ 𝛼‖𝑤𝑧(𝑘)‖2

2                                                      (13) 
 

with;    𝑤𝑧 = (𝑧 + 𝑧0)−3/2 
 

Here 𝑤𝑧 is a depth weighting matrix (𝑧 + 𝑧0)−3/2 in which z0 is a small 
constant for suppressing singularity, z is the mean depth of each element 
and the power value is 3/2 since the effect of a cubic-form declines by 
inverse distance with a structural index 3. This depth weighting factor 
causes an accurate inversion result as it sets a larger importance on the 
deeper section. The data weighting matrix is also given as: 

 

 𝑤𝑓 = 𝑑𝑖𝑎𝑔 (1 𝜏1⁄ , 1 𝜏R⁄ ,… , 1 𝜏𝑛⁄ ) , 𝑅 = 1,… , 𝑛                                         (14) 
 

Here 𝜏𝑅  is the noise standard deviation in the Rth data. 
Next, like Pilkington (1997) [36] and Meng et al. (2017) [37], we can 

write it as below; 
 

[
𝑤𝑓𝐴

𝛼
1

2𝑤𝑧
] (𝑘) = [

𝑤𝑓𝑑

0
]                                                                                                (15) 

 

Or equivalently expressing a vector 𝛽 and matrix 𝜀 
 

𝜀𝑘 = 𝛽                                                                                                                     (16) 
 

For minimizing the linear term (like the above matrix) iterative 
system uses the LSQR process (this method was described in many 
articles mentioned in the introduction section, so it is avoided any extra 
explanation about it). The misfit of the model response with the 
observed data is then assessed by the RMS error [38-40]. 

For solving the ill-posed problem and a large linear expression, the 
LSQR technique (or LB solver) uses an iterative procedure. This method 
is faster than the conjugate gradient (CG) technique for solving 
Tikhonov regularization problems. In this method the matrix dimension 
of the subsurface area is small enough and it causes the LSQR procedure 
consumes less time and computer RAM in contrast to the direct 
procedures [41]. 

In the following part, the optimum regularization amount 𝛼 
(regularization parameter) and l (steps of the LB solver) is obtained by 
the weighted-GCV (WGCV) with presumption w=0.5 in synthetic and 
real case which is an appropriate technique [42]. Note that the ideal 
regularized answer is matched to the regional minimum of the WGCV 
curvature that the w constant is stable in the range (0,1). Now, at the end 
of this part, the flowchart of the proposed modeling algorithm is drawn 
to clarify the work steps (Figure 2). 



92 K. Danaei et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 57-1 (2023) 89-99 

 

 

Figure 2. Workflow for inversion the proposed algorithm on magnetic data. 

 

3. Synthetic data inversion 

To assess the efficiency of the suggested inversion algorithm, it was 
first applied on a synthetic magnetic data. This model contains a rough 
shape under the surface that is divided into 38568 irregular hexahedral 
meshes as displayed in Figure 3a and in Figures 3b, 3c and 3d, with cross-
section in X=100 m, Y=100 m and Z= -100 m. The specification of the 
model includes the magnetic susceptibility of the target, the Earth’s 
magnetic field intensity (B), angles of declination (D), inclination (I) 
and depth of the body which are assumed to be equal to 0.05 SI, 47500 
nT, 2, 50 and 50 meters respectively. 

The magnetic response of the body is displayed in Figure 4a, with a 
5% contaminated Gaussian noise. The whole number of data is 121 with 
spacing of 20 m on a 200 m × 200 m grid displayed in Figure 4b. 

To obtain the magnetic susceptibility model and evaluate the effect 
of low dimension forward kernel in reproducing exact rough model, 
some l step is performed by the LSQR technique. In Figures 5a to 5c, the 
cross-section at X = 100 m and Y = 100 m and the results of the inversion 
are presented (the outcome is displayed with green and rough model 
exposed with dark blue which fits together wonderfully but the 
proposed process is a slightly bigger response). Here a kernel matrix 
with less dimensionality is replaced with the forward matrix G121×38568 
(121 and 38568, are respectively the numbers of data and the meshes). 
Approximately all obtained answers were appropriate and very similar 
in some steps. Thus, it is not necessary to increase the number of steps 
because the outcomes are not different outside as l=100 that the running 

time is 0.4643 s. In Figure 6, the running time on a processer with a 64-
bit operation system, 32-GB RAM, 2.4 GHz CPU, and Core i7-8750H for 
l step was shown. It is seen that increasing l causes the running time to 
be higher in obtaining the magnetic susceptibility model. 

To obtain reasonable results, a suitable regularization factor is 
necessary. We ran 3D inversion with different value of w from 0 to 1 and 
found that w =0.5 produces the best value of the regularization 
parameter α = 4×109 when the amount of the WGCV is minimized. The 
RMS error among the predicted and the synthetic magnetic data was 
found around 0. 7% which hints the accuracy of the results. 

4. Real data 

In Iran, several kinds of Iron reserves are formed. The main iron 
targets were made in Cenozoic and the Neoproterozoic-early Cambrian 
[43, 44]. More than 4 billion tons of iron deposits in Iran include placer 
deposits, iron oxide copper gold (IOCG), magmatic ores, skarn, 
magnetite-apatite, Kiruna-type and volcano-sedimentary reserves. The 
main structural regions of iron host resources include Zagros, Bafq-
Posht-e-Badam back arc region, and Sanandaj-Sirjan metamorphic 
region (Fig. 7). Moreover, Urumieh-Dothtar and Alborz area have some 
occurrence of iron resources. In Iran, iron mineralization is in three eras 
[44]: (1) Paleozoicearly Mesozoic (volcano-sedimentary), (2) Cenozoic 
(skarn, placer, magmatic, IOCG and Kiruna-kind), and (3) the 
Neoproterozoic-early Cambrian (Kiruna-type and volcano-
sedimentary). 
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Figure 3. (a) A three-dimensional synthetic model, (b) the model’s cross-section in X = 100m, (c) the model’s cross-section in Y = 100m, and (d) the model’s cross-section 
in Z = −100 m. 

 

 

Figure 4. (a) The synthetic model’s response (with 5% Gaussian noise), and (b) a 3D synthetic model with residual magnetic anomaly and ground topography. 
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Figure 5. (a) Perspective view of inversion result with cut-off (0.35-0.7 SI in susceptibility) and l=100, (b) the model’s cross-section in X = 100m, and (c) the model’s cross-
section in Y = 100 m. 

 

Figure 6. Time of inversion process for several l steps. 

The area that its real ground magnetic data is used in this study 
locates in the Kafeh-E-Taghestan region with latitude and longitude of 
310 36' and 530 39' respectively. It is in 25 kilometers SW of Shavaz region 
and 170 km from Yazd province. In the next sub-sections geology of the 
area and data modeling is explained. 

4.1. Geological setting 

The area has high potential due to metalliferous incidences, which are 
magnetite and hematite [45]. The mineralization of this area is shaped 
along the Nain-Dehshir-Baft fault where a collection of pelagic 

limestones (upper Cretaceous defined by microscopic fossils), 
radiolarite and ultrabasic rocks (gabbro pegmatoid and serpentinite) are 
present along the Dehshir-Baft fault. It can be seen on the geological 
map that the study area has the outcrops of andesite and diabase and 
more coverage of Kerman conglomerate and alluvial (Fig. 7). Also, 
classifications of andesite, shale and dolomitic can be seen in the nearby 
region. On the edge of andesitic rocks, tuff and small amounts of 
magnetite and hematite can be seen [46]. 

The granodiorite rocks and Shirkuh granite (acidic composites and 
biotite granodiorites) in the east in this region were for lower 
Cretaceous. Limestone with gabbro-diorite, red marls and 
conglomerates are the lithology of the Sangestan formation. Also, the 
Shirkuh granite is under the Sangestan formation and belongs to early 
Cretaceous [47]. The unit overlying the Lower Cretaceous has 
dolomitic-limestone composition in the Taft formation. 

4.2. Inversion of real data 

The magnetic data was acquired using a grid of 550× 650 m with 
spacing of 20 and 40 m along the x axis, and 10 and 20m along the y axis. 
Figure 8a shows two anomalous regions maybe related to iron 
mineralization on the residual magnetic map with 1641 observation 
points. Figure 9 shows the study area that is divided to irregular 
elements with topography relief. Also the optimum value 106 for 𝛼 
produced the minimum amount of the WGCV. Considering the 
presence alluvial sediments as background geological unit, a constraint 
was applied on inversion of geophysical data to keep the mesh 
susceptibilities positive. The results of 3D inversion are given as some 
magnetic susceptibility cross-section at X = 727500 m, 727600 m, 727700 
m and Y = 3507100 m, 3507200 m, 3507300 m and Z = 50, 150, 250 m  
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Figure 7. A schematic structural map of Iran including thrusts and strike-slip faults. The study area has shown with a rectangle on it. A simplified geological map of the 
Shavaz area was provided on the right side of this Figure. [48]. 

 

 

Figure 8. (a) The map of residual measured magnetic data, and (b) the map of predicted (model response) magnetic data.. 

respectively in Figures 10a-10g. Furthermore, Figures 11a-b display the 
recovered model with cut-off values of 0.45-0.8 and 0.1-0.95 SI magnetic 
susceptibility at the l-steps of 100 of inversion process. It illustrates that 
the recovered model has the highest volume of response over an area 
with 400 meter length in the center of model. The predicted magnetic 
data is shown in Figure 8b. 

The difference between the predicted and the observation magnetic 
response is shown by the RMS error which was found around 4.9% on 
real data. Also the regression coefficient is 0.90 that this amount of error 
indicates the accuracy of the inversion results for real data. To get this 

inversion results, the size of elements was decreased on shallow depth 
and increased with depth. Additionally, the model space at the borders 
was increased to remove the border error. Moreover, to remove any 
regional effect which may exist, the padding cells around boundaries 
were added. 

Figure 11 depicts the results of 3D inversion of magnetic data as 2D 
section at X= 727600 m with some drilled boreholes along it. This cross 
section displays two different regions of high magnetic susceptibility 
values along the depth of 60 to 250m which may indicate the iron ore 
mineralization. The running time of inversion was around 17.45 seconds  

  

Fig. 8. (a) The map of residual measured magnetic data, and (b) the map of predicted (model 1 

response) magnetic data.  2 

(a) (b) 
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Figure 9. Division of the study region with a mild topography using the irregular 
elements.. 

based on the proposed inversion routine for the obtained model. The 
computer configuration was the same as mentioned for inversion of the 
synthetic data.   

Figures 7a and 7b, show 34 boreholes (yellow points), out of which four 
of them (P2, S13, P6 and D1 on Figure 12) are selected to evaluate the 
outcomes of 3D inversion. Figure 13 shows depth of hole, results of 
inverse modelling (as magnetic susceptibility log), the total Fe weight 
percent of core drilling and their geological logs on each these 4 core 
drilled. As can be seen in the figures, in borehole No. P6, the most 
enrichment of ore mineralization was occurred at the depth intervals of 
34-46 m (50.01% is grade of Fe) that has notable relationship with the 
inversion result that shows the magnetic susceptibility of about 0.8 in 
this depth interval. The similar matching settings are iterated at other 
boreholes. Enrichment in mineralization of iron ore in these 4 boreholes 
along with their depth intervals are given in Table 3. 

It is seen that the obtained results of 3D inversion are in good 
agreement with those boreholes. This is another reason for proficiency 
of the proposed 3D inversion algorithm. 

                       

Figure 10. 3D inversion results as cross sections of the magnetic susceptibility at X = 727600 m (a), Y = 3507100 (b), a depth slice at Z = 150 m (c), X = 727500 m, X = 
727600 m and X = 727700 m (d), Y = 3507100, Y = 3507200 and Y = 3507300 (e), Z = 50 m, Z = 150 m and Z = 250 m (f), X = 727600 m and Z = 150 (g), and X = 727600 m, 
Y = 3507200 and Z = 150 m (h), 
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Figure 11. The 3D perspective of magnetic susceptibility with l=100 in inversion 
process, (a) with cut-off grade of magnetic susceptibility 0.4-0.85 SI, and (b) 0.05-
0.9 SI. 

 

 
 

Figure 12. A section of 3D magnetic data inversion with 4 boreholes at X=727600m 
location with relief topography. 
 

Table3; Enrichment of iron ore mineralization of ore along depth intervals for 4 
boreholes 

Borehole No. Total Fe grade (wt%) Depth interval of Fe ore 

enrichment(m) 

P2 51.94 7.5-13 

P6 50.01 34-46 

D1 47.85 21.6-23.8 

S13 43 9-24 

 

 
 

Figure 13. The results of 3D inversion with data provide at locations of 4 drilled 
boreholes. In order to have a good comparison, on all figures, the order of data, 
from left to right column, include: the drilling depth (m), inversion results as 
magnetic susceptibility amounts at any depth, total weight of iron ore grade (as 
Fet (%)) of drilling, and description of the lithology along depth. 

5. Conclusion 

Gauss–Legendre quadrature method was used to estimate the 
magnetic data by unstructured meshing in the subsurface. It was shown 
that it facilitates preserving accurately the geometry of complex-shaped 
sources and capturing the impact of rough topography on inverse 
modeling. To accelerate the inversion the LSQR technique by using a 
LB solver to replace a kernel by less dimensions is used. The suggested 
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Fig. 12. A section of 3D magnetic data inversion with 4 boreholes at X=727600m location with 1 

relief topography. 2 

Susceptibility (SI) 



98 K. Danaei et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 57-1 (2023) 89-99 

 

procedure is a kind of fast smooth inversion routine which offers 
precious views about susceptibility distribution in the subsurface using 
magnetometry geophysics. The performance of this algorithm was 
studied for a synthetic complex-shaped body, and then it was employed 
on a real magnetic data set which provided an accurate outcome. So that 
the length of mineralization is about 300 meters along the Y axis and its 
depth has continued up to 250 meters. Also the running time of 
algorithm execution is around 17.45 seconds.  Additionally, the RMS 
error and the regression coefficient in order were found around 4.9% 
and 0.90 on real data. At the end the obtained model of iron-bearing 
mineralization through its magnetic susceptibility model was approved 
correctly with the consequences of the existing boreholes. 
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