[1] Zhang, Z., Hou, D., Guo, Z., He, Z., & Zhang, Q. (2020). Experimental study of surface constraint effect on rock fragmentation by blasting.
International Journal of Rock Mechanics and Mining Sciences, 128, 104278. doi:
https://doi.org/10.1016/j.ijrmms.2020.104278
[2] Adesida, P. A. (2022). Powder factor prediction in blasting operation using rock geo-mechanical properties and geometric parameters.
International Journal of Mining and Geo-engineering; 56(1), 25-32. doi:
https://doi.org/10.22059/IJMGE.2021.310930.594870
[3] Rodríguez, R., García de Marina, L., Bascompta, M., & Lombardía, C. (2021). Detsermination of the ground vibration attenuation law from a single blast: A particular case of trench blasting.
Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1182–1192
. doi:
https://doi.org/10.1016/j.jrmge.2021.03.016
[4] Lopez-Jimeno, C. L., Jimeno, E., & Carcedo, F. J. A. (1995). Drilling and Blasting of Rocks Rotterdam: A. A. Balkema Publishers.
[5] Hammed, O. S., Popoola, O. I., Adetoyinbo, A. A., Awoyemi, M. O., Adagunodo, T. A., Olubosede, O., & Bello, A. K. (2018). Peak particle velocity data acquisition for monitoring blast induced earthquakes in quarry sites.
Data in Brief, 19, 398-408. doi:
https://doi.org/10.1016/j.dib.2018.04.103
[6] Dumakor-Dupey, N. K., Arya, S., & Jha, A. (2021). Advances in Blast-Induced Impact Prediction—A Review of Machine Learning
Applications.
Minerals, 11(6), 601-630
. doi:
https://doi.org/10.3390/min11060601
[7] Zhen-xiong, W., Wen-bin, G., Ting, L., Jian-qing, L., Jing-lin, X., & Xin, L. (2016). Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB
. Shock and Vibration, 1–13
. doi:
https://doi.org/10.1155/2016/7503872
[9] Hacefendioglu, K., & Alpaslan, E. (2015). Stochastically simulated blast-induced ground motion effects on non-linear response of an industrial masonry chimney.
Stochastic Environmental Research and Risk Assessment, 28 (2) 415–427.
https://doi.org/10.1007/s00477-013-0761-7
[10] Yin, Z., Hu, Z., Wei, Z., Zhao, G., Hai-feng, M., Zhang, Z., & Feng, R. (2018). Assessment of Blasting-Induced Ground Vibration in an Open-Pit Mine under Different Rock Properties.
Advances in Civil Engineering, 1–10
. doi:
https://doi.org/10.1155/2018/4603687
[11] Jayasinghe, B., Zhao, Z., Teck Chee, A. G., Zhou, H., & Gui, Y. (2019). Attenuation of rock blasting induced ground vibration in rock-soil interface.
Journal of Rock Mechanics and Geotechnical Engineering, 11(4),
770-778. doi:
https://doi.org/10.1016/j.jrmge.2018.12.009
[12] Hacefendioglu, K., & Soyluk, K. (2012). Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys.
Structural Engineering and Mechanics, 43(6),835–845. doi:
https://doi.org/10.12989/
sem.2012.43.6.835
[13] Hacıefendioglu, K. (2017). Stochastic dynamic response of short-span highway bridges to spatial variation of blasting
ground vibration. Applied Mathematics and Computation, 292, 194–209.
https://doi.org/10.1016/j.amc.2016.07.039
[14] Rehmana, G., khattakb, I., Hamayunc, M., Rahmana, A., Haseeba, M., Umara, M., Alia, S. Iftikhard, W., Shamsa, A., & Pervaiz, R. (2021). Impacts of mining on local fauna of wildlife in District Mardan & District Mohmand Khyber Pakhtunkhwa Pakistan.
Brazilian. Journal of Biology, 84(e251733), 1-11. doi:
https://doi.org/10.1590/1519-6984.251733
[15] Gascoyne, M., & Thomas, D. A. (1997). Impact of blasting on groundwater composition in a fracture in Canada’s Underground Research Laboratory. Journal of Geophysical Research; 102(B1), 573-584.
[16] Adepitan, R. A., Owolabi, A. O., & Komolafe, K. (2018). Prediction of structural response to blast-induced vibration in Kopek Construction Quarry, Ikere-Ekiti, Ekiti State, Nigeria.
International Journal of Environmental Studies, 75(6), 990–999. doi:
https://doi.org/10.1080/00207233.2018.1473207
[17] Saadat, M., Khandelwal, M., & Monjezi, M. (2014). An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran.
Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 67–74. doi:
https://doi.org/10.1016/j.jrmge.2013.11.001
[18] Lawal, A. I., & Idris, M. A. (2019): An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations.
International Journal of Environmental Studies, 1-17.
doi:
https://doi.org/10.1080/00207233.2019.
1662186
[19] Nicholls, H.R., Johnson, C. F., & Duvall, W. I. (1971). Blasting Vibrations and Their Effects on Structures, Bureau of Mines, Washington DC, 1971. Bulletin 656.
[20] Dowding, C. H. (1985). Blast Vibration Monitoring and Control, Prentice–Hall, Englewood Cliffs, NJ.
[21] Odello, R. J. (1980). Origins and Implications of Underground Explosives Storage Regulations Technical Memorandum, No. 51-80-14, Naval facilities engineering command, USA
[22] Duvall, W. I., & Fogleson, D. E. (1962). Review of criteria for estimating damage to residences from blasting vibration. Report no. 5968 (Washington, DC: United States Bureau of Mines).
[23] Langefors, U. & Kihlström, B. (1978). The Modern Technique of Rock Blasting. John Wiley & Sons.
[24] Ambraseys, N. R., & Hendron, A. J. (1968). Dynamic behaviour of rock masses. In: K. G. Stagg and O.C. Zeinkiewicz (Eds) Proceedings of the Rock Mechanics in Engineering Practice (London: Wiley), 203–227.
[25] Indian Standards Institute, (1973) Criteria for safety and design of structures subjected to underground blast. ISI Bulletin IS-6922 (New Delhi: Indian Standards Institute).
[26] Ragam, P., & Nimaje, D. S. (2018). Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: A case study.
Noise & Vibration Worldwide, 49(3), 111–119. doi:
https://doi.org/10.1177/0957456518763161
[27] Dehghani, H., & Ataee-pour, M. (2011). Development of a model to predict peak particle velocity in a blasting operation.
International Journal of Rock Mechanics and Mining Sciences, 48(1), 51–58. doi:
https://doi.org/10.1016/j.ijrmms.2010.08.005
[28] Nguyen, H., Bui, X., Tran, Q., Le, T., Do, N., & Hoa, L. T. (2019). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam.
SN Applied Sciences, 1(1), 125–135. doi:
https://doi.org/10.1007/s42452-018-0136-2
[29] Ajaka, E. O., & Adesida, P. A. (2014). Importance of Blast-Design in Reduction of Blast-Induced Vibrations.
International Journal of Science, Technology and Society, 2(3), 53-58. doi:
https://doi.org/10.11648/j.ijsts.20140203.14
[30] Jahed, A. D., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization.
Arabian Journal of Geosciences, 7(12), 5383–5396. doi:
https://doi.org/10.1007/s12517-013-1174-0
[31] Skagius, K., Wiborgh M., Ström A., & Morén L. (1997). Performance Assessment of the Geosphere Barrier of a Deep Geological Repository for Spent Fuel: The Use of Interaction Matrices for Identification, Structuring and Ranking of Features, Events and Processes. Nuclear Engineering and Design, 176(1), 155-162.
[32] Avila, R., & Moberg, L. (1999). A Systematic Approach to the Migration of< Sup> 137 Cs in Forest Ecosystems Using Interaction Matrices. Journal of Environmental Radioactivity, 45(3), 271-282.
[33] Velasco, H., Ayub, J., Belli, M., & Sansone, U. (2006). Interaction Matrices as a First Step Toward a General Model of Radionuclide Cycling: Application to the 137 Cs Behavior in a Grassland Ecosystem.
Journal of Radioanalytical and Nuclear Chemistry, 268(3), 503-509. Wiley). doi:
https://doi.org/
10.1007/s10967-006-0198-2
[34] Agüero, A., Pinedo, P., Simón, I., Cancio, D., Moraleda, M., Trueba, C., & Perez-Sanchez, D. (2008). Application of the Spanish Methodological Approach for Biosphere Assessment to a Generic High-level Waste Disposal Site.
Science of the Total Environment, 403(1), 34-58. doi:
https://doi.org/10.1016/
j.scitotenv.2008.04.054
[35] Mavroulidou, M., Hughes, S. J., & Hellawell, E. E. (2004). A Qualitative Tool Combining an Interaction Matrix and a GIS to Map Vulnerability to Traffic Induced Air Pollution.
Journal of Environmental Management, 70(4), 283-289. doi:
https://doi.org/10.1016/j.jenvman.2003.12.002
[36] Condor, J., & Asghari, K. (2009). An Alternative Theoretical Methodology for Monitoring the Risks of CO< sub> 2 Leakage from Wellbores. Energy Procedia, 1(1), 2599-2605.
[37] Fattahi, H., & Moradi, A. (2017) Risk assessment and estimation of TBM penetration rate using RES-based model. Geotech Geol Eng 35:365–
[38] Fattahi, H. (2017) Risk assessment and prediction of safety factor for circular failure slope using rock engineering systems. Environ Earth Sci 76:224
[40] Fattahi, H., & Moradi, A. (2018) A new approach for estimation of the rock mass deformation modulus: a rock engineering systems-based model. Bull Eng Geol Environ 77, 363–374.
[41] Huang, R., Huang, J., Ju, N., & Li, Y. (2013) Automated tunnel rock classification using rock engineering systems. Eng Geol. 156, 20–27
[42] Fattahi, H. (2018) An estimation of required rotational torque to operate horizontal directional drilling using rock engineering systems. J Pet Sci Technol 8:82–96.
[43] Faramarzi, F, Mansouri, H., & Ebrahimi-Farsangi, M. A. (2014). Development of rock engineering systems-based models for fly rock risk analysis and prediction of flyrock distance in surface blasting.
Rock Mechanics and Rock Engineering, 47, 1291–1306. doi:
https://doi.org/10.1007/s00603-013-0460-1
[44] Saffari, A., Sereshki, F., Ataei, M. & Ghanbari, K. (2013). Applying Rock Engineering Systems (RES) approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines.
Int. J. Min.& Geo-Eng., 47(2), 115-127.
https://doi.org/10.22059/ijmge.2013.51333
[45] Hudson, J. A. (1992). Rock engineering systems: theory and practice. Ellis Horwood, Chichester.
[46] Mazzoccola, D. F., & Hudson, J. A. (1996). A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Stability.
Quarterly Journal of Engineering Geology; 29, 37 – 56. doi:
http://qjegh.lyellcollection.org/
[47] Yang, Y., & Zhang, Q. (1998). The application of neural networks to rock engineering systems (RES).
International Journal of Rock Mechanics and Mining Science, 35, 727–745. doi: doi:
https://doi.org/10.1016/S0148-9062(97)00339-2
[48] Zare-Naghadehi, M., Jimenez, R., KhaloKakaie, R., & Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes.
Eng. Geol.; 118, 82–92. doi:
https://10.1016/j.enneo.2011.01.003
[49] Zare-Naghadehi, M., Jimenez, R., KhaloKakaie, R., & Jalali, S. M. E. (2013). A new open-pit mine slope instability index defined using the improved rock engineering systems approach.
International Journal of Rock Mechanics and Mining Science, 61, 1–14. doi:
http://dx.doi.org/10.1016/j.ijrmms.2013.01.012
[51] Faramarzi, F., Ebrahimi Farsangi, M. A. & Mansouri, H. (2013). An RES based model for risk assessment and prediction of back break in bench blasting. Rock Mech Rock Eng.; 46, pp.877–887.
https://dx.doi.org/10.1016/j.ijrmms.2012.12.045
[52] Hudson, J. A. (2013). Review of Rock Engineering Systems applications over the last 20 years. In Rock Characterisation, Modelling and Engineering Design Methods.
Taylor & Francis Group: London, UK, 419–424. doi:
https://dx.doi.org/10.1201/b14917-75
[53] Jiao, Y., & Hudson, J. A. (1998). Identifying the critical mechanism for rock engineering design. Géotechnique, 48, 319–335.
[54] Benardos, A. G., & Kaliampakos, D. C. (2004): A Methodology for Assessing Geotechnical Hazards for TBM Tunnelling—Illustrated by the Athens Metro, Greece.
International Journal of Rock Mechanics and Mining Sciences, 4, 987–999. doi:
https://doi.10.1016/j.ijrmms.2004.03.007
[55] Mohammadi. M., & Azad, A. (2020). Applying Rock Engineering Systems Approach for Prediction of Overbreak Produced in Tunnels Driven in Hard Rock.
Geotechnical and Geological Engineering, 38, 2447–2463. doi:
https://doi.org/10.1007/s10706-019-01161-z
[56] Singh, P. K., Roy, M. P., Paswan, R. K., Sarim, Md., Kumar, S., & Jha, R. R. (2015). Rock fragmentation control in opencast blasting.
Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 225-237. doi:
https://doi.org/
10.1016/j.jrmge.2015.10.005
[57] Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization.
Arabian Journal of Geosciences, 7(12), 5383–5396.
doi:
https://doi.org/
10.1007/s12517-013-1174-0
[58] Konya, C. J., & Walter, E. J. (1990). Surface blast design. New Jersey: Prentice Hall.
[59] Salmi, E. F., & Sellers, E. J. (2021). A review of the methods to incorporate the geological and geotechnical characteristics of rock masses in blastability assessments for selective blast design.
Engineering Geology, 281, 105970. doi:
https://doi.org/10.1016/j.enggeo.2020.105970
[60] Cunningham, C. V. B. (1983). The Kuz-Ram model for prediction of fragmentation from blasting. In: Proceedings of the first international symposium on rock fragmentation by blasting. Lulea, Sweden; 23–26 August 1983. p. 439-453.
[61] Hasanipanah, M., Armaghani, D. J., Monjezi, M., & Shams, S. (2016). Risk Assessment and Prediction of Rock Fragmentation Produced by Blasting Operation: A Rock Engineering System.
Environmental Earth Sciences, 75, 1–12. doi:
https://doi.10.1007/s12665-016-5503-y