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A B S T R A C T 

 

This paper presents a novel rock engineering system (RES) based method for estimating blast-induced vibration attenuation risk index and 
predicting peak particle velocity (PPV). The RES approach involves three key steps, which are the identification of influencing parameters, 
the construction of an interaction matrix, and the rating of parameters based on their influence on ground vibration. The selected parameters 
are the scale distance (SD), the ratio of the scale distance to stemming divided by the burden (SD/TB), the distance of the monitoring station 
(D), the scale distance divided by the burden (SD/B), the ratio of the scale distance to powder factor (SD/PF) and the ratio of scale distance 
to spacing divided by the burden (SD/SB). The results indicated that all the six parameters considered have statistically significant influences 
on the constructed interaction matrix system, with the SD having the highest weighty factor (21.43%) while SD/TB is the lowest (14.29%). 
The maximum rating of the parameters is 5, 5, 4, 5, 5, and 4 for SD, D, SD/B, SD/PF, SD/SB, and SD/TB, respectively. The attenuation risk 
index ranges from 14.29 to 63.43, and the slope of the actual measured PPV against the calculated attenuation risk index is negative. The 
developed RES-based model demonstrated better performance and a reliable method for ground vibrations prediction with a higher degree 
of accuracy, considering its higher determination coefficient (R2 = 0.96) and smaller error (RMSE = 1.08, MAD = 0.79, MAPE = 9.95) compared 
to multiple regression, Langefors & Kihlstrom and Hudaverdi models.  
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1. Introduction 

Fragmentation of rocks for aggregate production, loosening of 
minerals from parent rocks, extraction of ore, and other civil works 
without impairing the immediate environment have been the concern 
of blast engineers for a long time. Blasting is the primary method of rock 
fragmentation, and it causes ground vibration, fly rocks, air-blast and 
back-break, which are unwanted phenomena that cause damage to the 
environment. Despite these unwanted occurrences from blasting, it is 
still the most used method of rock fragmentation because it is cost-
effective and highly efficient [1], depending on the technical know-how 
of blasters and the understanding of the geological properties of rocks. 
There seems to be no acceptable and environmentally friendly method 
of rock fragmentation than blasting. Hence, the need to manage and 
control the unwanted situations resulting from it in mines and quarries. 
Some blasters had used their experience and the trial-by-error method 
to mitigate the side effects of blasting and had succeeded over time [2]. 
The increase in the population of most cities and subsequent expansion 
has reduced the proximity of mines and quarries to those cities. 
Therefore, it is necessary to redesign blasting to reduce its 
environmental impact. 

Researchers regard blast-induced ground vibration as one of the most 
devastating side effects of blasting that must be controlled and managed 
[3]. The reason is that vibration is the most felt impact, and researchers 
and explosive engineers are yet to provide a solution. Studies have 
proved that when an explosive detonates, it is done violently and 
generates seismic waves like earthquakes [4-5]. The seismic waves move 
through the cracks created in rocks and ground to cause movement of 
the ground particles [4]. Ground vibration is a product of dissipating  

 
 

energy generated by explosives for fragmentation in blasting operations 
[4, 6]. Evidence suggests that it does not depend only on charge quantity 
but also on blast design [7]. There had been a correlation between the 
mass of explosives for blasting, the ground vibration produced, and the 
monitoring distances [8, 9]. The cycle of blast-induced ground vibration 
waves decreases with increasing distance and increases with a higher 
quantity of explosives [9-13]. The effects of ground vibration include 
disturbance of the natural habitats of plants and animals [14], the 
distorted composition of groundwater [15], and the creation of crakes 
on the wall of buildings, among others [16]. 

Researchers often use frequency and the peak particle velocity of the 
seismic waves generated by blasting to measure blast-induced ground 
vibration [17]. However, the peak particle velocity (PPV), measured in 
millimeters per second (mm/sec) with the aid of seismographs that 
present the results in three dimensions, longitudinal, transverse, and 
vertical, are often used [18]. The United States Bureau of Mines (USBM) 
proposed that the maximum allowable PPV that structures on soil near 
mine areas can withstand is 60 mm/second. Those on the weak rock are 
110 mm/second and 230 mm/second PPV for those on the hard rock [19-
21]. The improvement of blast design for effective blast-induced ground 
vibration management needs an accurate prediction of PPV and an 
understanding of how blast-design parameters such as spacing and 
burden interact to influence the degree of blast-induced ground 
vibration. However, the most acceptable blast-induced ground vibration 
predictive model is the USBM model developed by Duvall and Fogleson 
[22]. Other early predictors of blast-induced ground vibrations are 
Langefors and Kihlstrom [23], Ambraseys and Hendron [24], and the 
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Indian Standards Institute [25]. Recently, several researchers have 
worked on developing models for predicting blast-induced ground 
vibrations using various methods such as multivariate analysis [8] and 
artificial neural networks [8, 20-21, 26-28]. Ajaka and Adesida [29] 
attempted to evaluate the influence of rock properties on blast-induced 
ground vibrations by comparing blast-induced PPV values in a 
limestone quarry to that of a dolomite quarry. Hacefendioglu [13] 
analyzed the spatial variation of blast ground motion to examine its 
effects on stochastic responses of short-span highway bridges. However, 
some other researchers proved that these models could not predict 
accurately at all times and everywhere [20, 30]. Hence, the need for 
improvement of the models and development of other models for better 
prediction of PPV or frequency of ground vibration. 

This study aimed to estimate blast-induced ground vibration’s 
attenuation risk index and predict PPV using the rock engineering 
system (RES) approach. The RES method has been applied to solve 
varieties of engineering problems, for instance, the investigation of the 
effects of spent fuel disposal on the environment [31], the studying of 
ecosystems [32-33], the assessment of radioactive waste control [34-35], 
traffic-induced air pollution [35] and environmental risk associated 
with reservoir pollution [36]. Recently, the RES approach was applied 
to research multiple rock engineering problems, such as the calculation 
of the rate of penetration for tunnel boring machines [37], estimation of 
safety factors for circular failure [38], evaluation of shaft resistance of a 
pile entrenched in rock [39] and the prediction of rock mass 
deformation modulus [40]. Also, Adesida [2] used the RES approach to 
predict powder factors using rock mass and geometric parameters, while 
Huang et al. [41] used it to classify rock mass. Fattahi [42] used the RES 
to assess the rotational torque needed for horizontal directional drilling. 
Also, Faramarzi et al. [43] used RES to predict the distance of flyrock in 
surface blasting, while Saffari et al. [44] used it to investigate the 
potential of spontaneous combustion of coal. However, no researcher 
has explored the use of the Rock Engineering System (RES) method to 
predict PPV and explore how the parameters that influence blast-
induced ground vibration interact. 

This study focussed on blast-induced vibration attenuation risk index 
(Ari) estimation and a new PPV predictive model development using 
the RES approach. The RES model is structured to accommodate as 
many influencing parameters as possible. The RES approach also has the 
advantage of analyzing descriptive parameters over the ANN and other 
methods. The model was developed based on data in open-source 
literature from the study of Hudaverdi [8]. Performance comparative 
analysis was done for the RES, multiple regression, Langefors & 
Kihlstrom, and Hudaverdi models using the coefficient of determination 
values (R2) and error analysis (RMSE, MAD, and MAPE). 

2. The Rock engineering system (RES) 

The RES is an essential tool for illustrating those parameters with a 
high degree of influence in problems associated with rock engineering 
[45-46]. The RES approach involves three key steps, which are the 
identification of influencing parameters, the construction of an 
interaction matrix, and the rating of parameters based on their 
influence. The interaction matrix utilized for describing the key 
parameters and their interaction in the RES structure is the major 
component of the RES approach. The interaction matrix is structured 
such that the primary parameters influencing the system are along the 
central diagonal of the matrix structure. The coded values recording 
their degree of interaction are in the perpendicular cells in the matrix. 
The description of a two-parameter matrix structure and the broad idea 
of coding the interaction matrix structures are shown in Figures 1 and 2, 
respectively. 

There are five methods of coding in the interaction matrix structure. 
These methods are expert semi-quantitative (ESQ), binary, continuous 
quantitative coding (CQC) [45, 47-50], probabilistic expert semi-
quantitative (PESQ), and expert method [44]. However, the ESQ 
method is more used than others because it is easy to understand. 
Likewise, in this paper, the ESQ method for assigning code to the 

relationship between parameters in the interaction matrix, as described 
by Hudson [45], was used. The interaction intensity’s description is by 
number representation, where 0 means no interaction, 1 is weak 
interaction, 2 is medium interaction, 3 represents strong, and 4 to critical 
interaction [43, 45]. Moreso, the advantage of this method is that the 
number of parameters in the interaction matrix has no limitations [52]. 

Coding the interaction of parameters in the matrix structure is done 
by inserting the number of the weight of the interaction of two 
parameters in their perpendicular cell. The sum of the horizontal values 
of each parameter in the structure is the measure of the influence of the 
individual parameter on the matrix structure, called the Cause (Ci) of 
the parameter (Equation 1). The sum of the vertical values measures the 
influence of the matrix structure on the parameter, and it is known as 
the Effect (Ei) of the parameter (Equation 2) [53]. The addition and 
subtraction of the Cause and Effect of each parameter is the measure of 
their significance in the interaction matrix, known as the interactive 
intensity and dominance, respectively. Parameters significance analysis 
for the interaction matrix structure is by plotting the coordinate values 
of Effect against Cause. A diagonal line on the cause-effect plot denotes 
points of equal value of Causes and Effects, which signifies the locus 
point where their dominance and subordination for all parameters are 
at equilibrium. Parameters on the right side of the diagonal line are those 
with more value of Causes than Effects, known as the dominant 
parameters. While those with lesser Causes than their Effects are on the 
left-hand side and are subordinate parameters. The weight factor (αi) of 
each parameter in the system, which is the percentage sum of Cause and 
Effect, is calculated using Equation 3 [45-46, 53-54]. 

 
𝐶𝑝𝑖 = ∑ 𝐼𝑖𝑗

𝑛
𝑗=1                                                                                                                  (1) 

 

𝐸𝑝𝑗 = ∑ 𝐼𝑖𝑗
𝑛
𝑖=1                                                                                                               (2) 

 

𝛼𝑖 =
(𝐶𝑖+𝐸𝑖)

(∑ 𝐶𝑖𝑖 +∑ 𝐸𝑖𝑖 )
× 100                                                                                           (3) 

 

where Ci is the cause of the ith parameter, and Ei is the effect of the ith 
parameter. 

 

 
Figure 1. The principle of the interaction matrix in RES, (athe ) two parameters 
(b) unlimited parameters [45, 55]. 

3. Methodology 

3.1. Narrative of the adopted group of datasets 

The specific objective of this paper is to develop a RES-based 
predictive model for the estimation of PPV using the knowledge of 
interaction among parameters that influence ground vibration. The 
interaction matrix development involves the blast geometry, the 
distance between the monitoring stations and the blast centers, data 
obtained from seismographs, and the rating of the influence of each 
parameter on PPV to develop the RES model. Data for this study were 
from the field investigations conducted by Hudaverdi [8] in Akdaglar 
Quarry, Istanbul, Turkey. Aggregate production for asphalt and 
concrete works is the operation of the quarry. The measurement of PPV 
in the quarry in the study is by Instantel tri-axial seismographs. The 
specification of the seismograph is 0.127–0.0159 mm/s resolution, a 
sampling rate of 1024 samples/s, and an accuracy of 3% at 15 Hz. The 
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PPV values measured by the seismograph vary from 0.127 mm/s to 254 
mm/s at a frequency of 2 to 300 Hz. The geometric parameters of the 
blast design, such as the drilled-hole diameter, burden, spacing, sub-drill, 
hole depth, stemming, and specific charge, were measured. In the study, 
Hudaverdi [8] modified the USBM PPV prediction model by using 
multivariate analysis to predict PPV, using a total of eighty-eight (88) 
datasets generated. The datasets were classified into two homogeneous 
groups according to similarity using cluster analysis, and the evaluation 
and confirmation of the group members were by using discriminant 
analysis. The development and validation of the RES-based model for 
predicting PPV in this paper were through datasets from one of the 
clustered groups. 

3.2. The RES application to PPV prediction 

Ratios of the blast design parameters and the monitoring distance of 
the PPV measured in thirty blasts by Hudaverdi [8] were used to 
develop scale distances and other factors identified to influence PPV. 
Blast design parameters are often considered in ratios because they are 
interrelated and depend on hole diameter [56]. In this study, the burden 
(B), powder factor (PF), the ratio of spacing to that of burden (SB), that 
of stemming to the burden (TB), and quantity of charge (Q) were the 
blast design parameters considered. The parameters also include 
measured distances between the monitoring stations and the center of 
blasts (D). The scale distance (SD) was estimated using the ratio of D to 
the square root of Q. Powder factor (PF) is adjudged an important blast 
design parameter by blast engineers and was considered for this study 
because of its influence on ground vibration [57]. Inadequate PF will 
cause the overloading of explosives and excessive ground vibration [58]. 
SB ranges from 1 to 2 depending on the energy coverage of a bench [8]. 
Detonation of explosives when S is less or too high than B may cause 
early splitting between blast holes and subsequent premature 
fragmentation of the stemming. These scenarios lead to a quick release 
of gases, causing excessive ground vibration and back-break, which 
result in poor fragmentation [59-60]. Generally, the value of TB is 
around 1. When TB is low, or the stemming length is too high, it may 
cause premature release of explosive gases, which results in poor rock 
fragmentation, and flyrock and increase the propagation of the seismic 
wave [60]. The burden is an essential individual parameter in blast 
design considered in this study because of its importance to the 
propagation of blast-induced ground vibration. A small B allows gas 
from detonated explosives to escape quickly to the atmosphere, causing 
air blasts and noise pollution [57-58]. However, a large B confines gases 
and may result in ground vibrations and back-break. In this study, the 
RES model was optimized, using the ratios of SD to PF, B, SB, and TB 
together with D and SD to develop a PPV predictive model. The 
rationale for selecting these parameters is their strong relationship with 
measured PPV. 

The attenuation risk index (Ari) estimation and PPV prediction were 
by modeling the interaction of the parameters with the RES approach. 
The influence of these parameters on PPV was studied meticulously and 
used to create an interaction matrix for the weighty factor (α) 
development for each parameter used for the RES prediction model for 
PPV. The fundamental parameters are the measured PPV, distances 
between the monitoring station and the center of the blast (D), the 
charge per delay (Q), and the burden (B). Derived parameters were the 
scale distances (SD) and the ratio of scale distance to stemming divided 
by the burden (SD/TB). The scale distance is the ratio of the D to the 
square root of Q. Other parameters derived are the scale distance 
divided by the burden (SD/B), the scale distance divided by the powder 
factor (SD/PF), and the ratio of scale distance to spacing divided by the 
burden (SD/SB). The six final parameters for the RES-based PPV 
prediction model development are D, SD, SD/TB, SD/PF, SD/B, and 
SD/SB (Table 1).. 

3.3. Rating of parameters 

Parameters were rated using their classes and how they influence 
blast-induced ground vibration. The rating of parameters starts from 
zero (0) to ends at a specific positive figure depending on the number 

of classes. The rating is such that if a parameter has four groupings, the 
rating will start from 0 to 3. Zero indicates the worst condition of 
influence of the parameter on PPV, while 3 signifies the best conditions. 
In other words, it is an unfavorable or poor effect on the propagation of 
PPV, and 3 indicates the most favorable conditions. The rating proposed 
in this study was by experience in rock blasting and excavation, outputs 
of other work, and estimation of existing ratings to find the proposed 
ratings for various ratios used in the study. 

3.4. Estimating PPV attenuation risk index 

Adesida [2] adopted the method used by Bernados and Kaliampakos 
[54], Faramarzi et al. [51], and Hasanipanah et al. [61] for the estimation 
of the vulnerability index (VI) of rock fragmentation, which is the risk 
in fragmentation (poor fragmentation), to develop the powder factor 
risk index in his study, as shown in Equation 4. The Pfi is the risk 
associated with the powder factor (poor blast design), correlated with 
the measured powder factor to develop the RES-based predictive model. 

 

𝑃𝑓𝑖 = 100 − ∑ 𝛼𝑖
𝑄𝑖

𝑄𝑚𝑎𝑥
 𝑖=1                                                                                     (4) 

 

Where αi, Qi, and Qmax are the weighty factor, the value (rating), and 
the max value assigned for the ith parameter, respectively. 100 is the 
highest value allocated to 𝑃𝑓𝑖, which is the powder factor’s worst-case 
scenario. In contrast, zero, the lowest value, indicates the most favorable 
condition for the powder factor. This study implemented the same 
approach for estimating PPV’s attenuation risk index (Ari). Ari is the 
measure of the combined risk associated with blast-induced ground 
vibration. The peak particle velocity’s attenuation index is estimated 
using Equation 5. 

 

𝐴𝑟𝑖 = 100 − ∑ 𝛼𝑖
𝑄𝑖

𝑄𝑚𝑎𝑥
𝑖=1                                                                                                    (5) 

 

The attenuation risk index is from 0 to 100, indicating various levels 
of severity of the controlled scale and grouped into three categories [54], 
shown in Table 2. 

 
Table 1. Description of the parameters. 

Parameter Symbol Min Max Mean SD 
Distance D 70.0 245.0 170.5 48.09 
Scale distance SD 7.74 23.34 15.44 3.66 
Scale distance to burden SD/B 3.1 9.95 6.34 1.66 
Scale Distance to powder 
factor SD/PF 14.34 46.69 28.90 7.45 

Scale distance to spacing to 
burden SD/SB 6.45 20.84 13.35 3.29 

Scale distance to stemming 
to burden SD/TB 6.45 20.24 14.12 3.36 

 

Table 2. Classification of Ari [54] 

Description Low – Medium Medium-High High – Very High 

Category I II III 

Ari 0 – 33 33 – 66 66 – 100 

 

3.5. Error Analysis 

Thirteen datasets in cluster 1 of the Hudaverdi [8] study, but not part 
of those used for the development of the models, were used to test the 
models by predicting RES, regression, Hudaverdi and Langefors and 
Kihlstrom. Error analysis of the estimated PPV using the RES, 
regression, Hudaverdi, and Langefors & Kihlstrom models was by using 
the training and testing datasets. The estimation of the goodness of fit 
of the predicted PPV was by the root mean square error (RMSE), the 
mean absolute deviation (MAD), and the mean absolute percentage 
error (MAPE) methods. Although, the RMSE provides the average error 
bias using the square of the error. However, RMSE cannot specify the 
data deviation trend but typically assign more weight to higher errors 
than smaller ones. Thus, RMSE is inefficient for error analysis for large 
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sample sizes but suitable for errors in small samples. Defiantly, the 
accuracy factor indicates the deviation between predictions by models 
and measured datasets. Theoretically, a predictive model is 
exceptionally accurate when RMSE is 0, R2 is 1, MAD is 0, and MAPE 
is 0%. The formulas for calculating RMSE, MAD, and MAPE are 
presented in Equations 6 - 8. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑖 (𝑚𝑒𝑎𝑠) − 𝑋𝑖 (𝑝𝑟𝑒𝑑))

2𝑛
𝑖=1                                                                 (7) 

 

𝑀𝐴𝐷 =  
1

𝑛
∑ |𝑋𝑖 (𝑚𝑒𝑎𝑠) − 𝑋𝑖 (𝑝𝑟𝑒𝑑)|𝑛

𝑖=1                                                                      (8) 
 

where Xi (meas) and Xi (predi) are measured and predicted variables, 
respectively, while n is the number of observations.  

4. Results and discussion 

4.1. Development of interaction matrix 

The influence of one parameter on another was investigated and 
coded using the expert semi-quantitative method and presented in 
Table 3. The six parameters used for the peak particle velocity prediction 
were in the cells along the central diagonal of the developed matrix table. 
The interaction intensity (C+E), degree of dominance (C-E), and the 
weighty factor (Equation 3) of each of the parameters were estimated 
from the interaction matrix, as shown in Table 4. The result indicated 
that the scale distance has the highest interaction significance in the 
interaction matrix system. The ratio of scale distance to that of the 
stemming to the burden has the lowest significant level. More so, the 
range of values (20-30) for the interaction intensity in the matrix shows 
that all the parameters have a statistically significant influence on the 
system. The results of the interaction intensity of the individual 
parameter are in Figure 2. 

 

Table 3. Interaction Matrix. 

SD 2 4 2 1 2 

3 D 1 1 2 0 

4 3 SD/B 3 4 3 

4 3 1 SD/PF 1 0 

4 3 0 4 SD/SB 1 

4 3 1 2 4 SD/TB 
 

 

 
Figure 2. Interaction Intensity of the parameters. 

 
According to Hudson [45], the line C=E on the C-E plot, shown in 

Figure 3, are points where the cause is equivalent to the effect. The 
points over the C=E line are known as the dominants, while those under 
it are called the subordinates. That is, parameters above the C=E plots 

are dominant, while those under them are subordinate in the system. 
The dominant parameters in the system are D, SD, and SD/PF. The SD/B 
and SD/TB are subordinate in the system. The SD/SB is at equilibrium 
in the system. 

 

 

 
Figure 3. Cause and Effect plot. 

 

 

Table 4. The weighting factor of the parameters. 

Parameter C E C+E C-E αi (%) 
SD 11 19 30 -8 21.43 

D 7 14 21 -7 15.00 

SD/B 17 7 24 10 17.14 

SD/PF 9 12 21 -3 15.00 

SD/SB 12 12 24 0 17.14 

SD/TB 14 6 20 8 14.29 

Sum 70 70 140 0 100 
 

4.2. Rating of parameter 

Table 5 presents the rating of individual parameters based on how 
they influence ground vibration. The range of values indicates the 
influence of each value on blast-induced ground vibrations. The result 
shows that the SD, D, SD/PF, and SD/SB have a maximum rating of 5. 
The SD/TB and SD/B have 4. The belief is that parameters with the 
highest rating will have an increased influence on blast-induced ground 
vibration propagation. 

 
 

Table 5. Ratings for parameters influencing PPV. 

Parameter Values and Ratings 

SD <5 5-10 10-15 15-20 20-25 >25 

Rating 5 4 3 2 1 0 

D <100 100-200 200-400 400-600 600-800 >800 

Rating 5 4 3 2 1 0 

SD/B <5 5-10 10-15 15-20 >20  

Rating 4 3 2 1 0   

SD/PF <10 10-15 15-20 20-25 25-30 >30 

Rating 5 4 3 2 1 0 

SD/SB <5 5-10 10-15 15-20 20-25 >25 

Rating 5 4 3 2 1 0 

SD/TB <5 5-10 10-15 15-20 >20   

Rating 4 3 2 1 0   
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4.3. 3 Ground vibrations’ attenuation risk index 

The estimated attenuation risk index for each parameter was by their 
calculated weighty factor, the assigned maximum rating, and the exact 
rating based on their measured values. The estimated Ari for each 
recorded blast ranges from 14.29 to 63.43 (Table 6). It indicates that the 
attenuation risk index for the observed datasets ranges from low-
medium to medium-high. The slope of the peak particle velocity against 
the calculated attenuation risk index shows that the index reduces with 
the PPV. It means that the blast-induced ground vibrations from excess 
explosive usage during blasting operations reduce with increased 
damping or attenuation factor. Therefore, the first category of the 
attenuation risk index, which ranges from 0 to 33, 

indicates a low damping factor, which will result in a high degree of 
damage to structures and the environment within the radius of the 
measured distance. The second category ranges from 33 to 66, which 
indicates moderate problems associated with ground vibration, that may 
impact the environment. The third category ranges from 66 to 100. It is 
a high attenuation damping factor that may not affect structures within 
the radius of the measured distance and the environment at large. The 
findings agree with previous studies that ground vibration reduces with 
distance [10, 33].  

 

Table 6. Estimated attenuation risk index (Ari) for the monitored blasts. 

Blast No SD D SD/B SD/PF SD/SB SD/TB Ari 

3 4 5 4 4 4 3 14.29 

9 3 4 3 1 3 2 41.86 

10 2 4 3 0 3 1 52.72 

12 2 4 3 0 2 0 59.72 

16 2 3 3 1 3 0 56.29 

18 2 4 3 1 3 1 49.72 

21 2 3 3 0 2 0 62.72 

33 3 4 3 2 3 2 38.86 

35 1 3 3 0 2 1 63.43 

36 3 4 3 1 3 3 38.29 

39 3 4 3 2 3 2 38.86 

41 2 3 3 0 2 1 59.14 

44 4 5 4 3 4 3 17.29 

47 2 3 3 0 3 2 52.14 

48 3 4 4 3 4 3 24.57 

52 2 3 3 0 2 1 59.14 

55 3 4 3 1 3 2 41.86 

63 3 4 4 2 2 3 34.43 

66 3 4 4 3 4 3 24.57 

69 3 4 3 2 3 2 38.86 

70 1 3 3 0 2 1 63.43 

71 2 3 3 1 3 1 52.72 

73 2 3 3 0 3 2 52.14 

74 3 4 3 2 3 2 38.86 

77 3 4 3 1 3 2 41.86 

78 1 4 3 0 2 1 60.43 

79 2 4 3 1 3 1 49.72 

84 3 4 3 1 3 2 41.86 

85 3 4 3 1 3 2 41.86 

87 3 4 4 2 3 2 34.57 

Qmax 5 5 4 5 5 4  

αi 21.43 15 17.14 15 17.14 14.29 100 

4.4. The RES-based PPV prediction model 

The RES model for PPV prediction development is a linear regression 
statistic model between the measured PPV and the estimated 
attenuation risk index (Ari). The model is represented mathematically 
in Equation 9. The coefficient of correlation (R2) for this model is 0.96 
(Figure 4), which is a good relationship, while the correlation between 
the measured and predicted PPV is in Figure 5. 

 

𝑃𝑃𝑉 = 28.311 − 0.4026𝐴𝑟𝑖                                                                                   (9) 
 

where Ari is the attenuation risk index, and PPV is the peak particle 
velocity in mm/s.  

 

 
Figure 4. PPV predictive model using Ari. 

 

 
Figure 5. The predicted PPV against the Measured PPV. 

 

4.5. Validation of the Proposed RES model 

The validation of the RES-based model for the prediction of PPV 
developed in this study was by comparing it with the multivariable 
linear regression, Hudaverdi, Langefors, and Kihlstrom models. And by 
evaluating the error analysis of the models using testing datasets. The 
training datasets used in this study were analyzed using multivariable 
regression statistics to formulate a mathematical predictive model for 
PPV with the aid of SPSS software and the model shown in Equation 10. 
The coefficient of determination of the regression statistic is 0.88, while 
the analysis of variance shows that the regression is statistically 
significant at 1.32E-09. The predicted PPV using the testing datasets for 
the RES, regression, Hudaverdi, Langefors, and Kihlstrom models are 
shown in Table 7, while the comparison of the error analysis for the 
models is in Table 8. For the training datasets, the RES-predicted PPV 
has the least values for RMSE, MAD, and MAPE, while for the testing 
datasets, the Hudaverdi model has the least error values for the error 
analysis. The results of the comparison between the actual measured and 
predicted PPV using various models is in Figure 7. The figure shows that 
the RES-predicted PPV is more adaptable to the measured PPV than 
other predictive models. 
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𝑃𝑃𝑉 = 33.01 − 3.174𝑆𝐷 − 0.017𝐷 + 2.18
𝑆𝐷

𝐵
+ 0.247

𝑆𝐷

𝑃𝐹
+ 0.979

𝑆𝐷

𝑆𝐵
 

                  −0.344
𝑆𝐷

𝑇𝐵
                                                                                             (10)  

where D is the distance of the monitoring station to the center of the 

blast (m), SD is the scale distance (m/kg
1

2), B is the burden (m), PF is 
the powder factor (Kg/m3), SB is the spacing-burden ratio, and TB is the 
ratio of stemming to burden. 

 

 
 

Figure 7. Comparison of measured PF with RES and regression predicted PF. 

5. Conclusion 

Rock blasting activities in the proximity of urban areas require special 
monitoring to reduce complaints and litigations, thus, improving the 
protection of natural resources and infrastructures. Hence, the RES 
model presented in this study improved the estimation of ground 
vibration that may arise from blasting. The RES is an expert-based 
approach that can accommodate many input parameters. The model can 
also deal with the complex characteristics of geological systems often 

associated with inherent uncertainties. Moreover, it has an advantage 
over statistical modeling and ANN methods in considering descriptive 
input parameters. The study shows that scale distance has the highest 
interaction (30) in the RES matrix system, thus, the most sensitive 
parameter in the system. While the scale distance has the highest 
weighty factor in the matrix system (21.43 %), and it is highly controlling 
other parameters. The study has shown that the blast design parameters 
influence the magnitude of ground vibrations propagated during 
explosive detonation in blasting operations and not only the scale 
distance as postulated by the USBM. The slope of the peak particle 
velocity against the calculated attenuation risk index indicates that the 
index reduces with the PPV. It means that the blast-induced ground 
vibrations from excess explosive usage during blasting operations 
reduce with increased damping or attenuation factor. The attenuation 
risk index can be a tool for estimating the safe distance for blasting as it 
indicates that where the Ari is low, the risk of damage due to ground 
vibration is high. 

Conclusively, the RES-based model developed for PPV prediction 
performs better than the multiple regression, Langefors & Kihlstrom, 
and Hudaverdi models with R2 = 0.96, RMSE = 1.08, MAD = 0.79, MAPE 
= 9.95, which indicates a high performance with limited error. Therefore, 
RES modeling is a reliable tool for predicting ground vibrations. The 
developed RES model can be used to design blasts based on the 
maximum permissible peak particle velocity limits for infrastructures 
close to quarries. However, the RES-based PPV predictive model 
(Equation 10) developed in this paper is open for more development 
because it did not consider rock and soil properties. Also, the model 
cannot be generalized because it is site specific. Therefore, results may 
vary from one location to another due to uncertainties in the geological 
system. Future work should include rock and soil properties as input 
parameters in the RES model. Also, data should be from different 
locations in consideration of the heterogeneous nature of the geological 
system. 

 

Table 7.  Predicted PPV by different models for the testing datasets. 

Ari Measured PPV 

(mm/s) 

Predicted PPV (mm/s) 

 RES (R2 = 0.82) Regression (R2 = 0.79) Hudaverdi (R2 = 0.76) Langerfors (R2 = 0.48) 

14.29 32.10 22.56 21.35 43.71 17.26 

41.86 8.20 11.46 12.54 9.31 6.97 

49.14 13.20 8.53 11.78 8.36 6.49 

41.86 9.13 11.46 11.71 9.78 7.98 

38.86 10.50 12.67 13.04 10.42 6.94 

27.57 28.00 17.21 15.13 17.67 22.70 

20.29 28.30 20.14 18.55 26.94 20.64 

28.15 22.40 16.98 14.60 20.35 16.79 

31.15 21.00 15.77 16.11 18.12 9.34 

38.86 8.41 12.67 11.82 9.40 9.27 

20.29 25.10 20.14 19.75 25.98 12.26 

38.86 12.20 12.67 12.64 12.55 19.34 

31.00 20.4 15.83 16.68 16.26 9.73 

 
Table 8. Error analysis of different models. 

Models 
Training  Testing 

RMSE MAD MAPE  RMSE MAD MAPE 

RES 1.08 0.79 9.95  5.8 5.06 28 

Regression 1.47 1.16 15.26  6.5 5.37 29 

Hudaverdi 1.89 1.19 11.43  4.8 3.17 10 

Langefors & Kihlstrom 5.37 3.77 40.00  8.16 6.68 35 
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