Using the mass-radius method to quantify the disturbed zones in Sidi Chennane mine through geoelectrical images

Document Type : Research Paper

Authors

Earth Sciences Department, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco

Abstract

This paper presents a new approach to quantify the rate of the disturbances within the phosphate series in an area of 50 hectares located in Sidi Chennane deposit, Ouled Abdoun, Morocco. The proposed approach consists in applying the mass-radius fractal method on the geo-electrical images to estimate the fractal dimension FD as an index of the rate of the disturbances. The result of this study shows a strong correlation between the measured disturbed surfaces displayed on the studied geo-electrical images and their corresponding fractal dimensions. The calculated FD’s values were found in the range of 2.081 to 2.719 and correspond to the range of the disturbances rates of 4.1 % to 17.7 % respectively. Therefore, the highest fractal dimension values reveal a high rate of disturbances and vice-versa. This analysis has confirmed that the fractal dimension may offers significant implications to distinguishing between the phosphate deposit at high disturbances rate and the deposit at low disturbances rate. This may lead to important implications for the mining engineers to obtain an accurate phosphate reserve estimate and make the best exploration and exploitation planning in Sidi Chennane mine.

Keywords


[1]    Walana, P., Davidssona, S., Johansson, S., Höök, M. (2015). Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resources Conservation and Recycling, (93), 178–187. http://dx.doi.org/
10.1016/j.resconrec.2014.10.0111.
[2]    Azmany, M., Farkhany, X., & Salvan, H.M. (1986). Gisement des Ouled Abdoun, Géologie des Gîtes Minéraux Marocains. Notes et Mémoires, Service Géologique du Maroc, 276(3), 200-249.
[3]    Edixhoven, J. D., Gupta, J., & Savenije, H. H. G. (2014). Recent revisions of phosphate rock reserves and resources: a critique. Earth System Dynamics, (5), 491–507. https://doi:10.5194/esd-5-491-2014
[4]    El Haddi, H., Benbouziane, A., Jourani, E., Amaghzaz, M., & Mouflih, M. (2011). La silicification des phosphates marocains: Typologie génétique et conséquences industrielles”. 1st International symposium on innovation and technology in phophate industry (Symphos), Marrakech-Morocco, 111-112.
[5]    Moutaouakil, D., & Giresse, P. (1993). Pétrologie et environnement sédimentaires des phosphates méso-cénozoïques du bassin des Oulad Abdoun (Maroc). Bulletin de la Société Géologique de France, (164), 473–491.
[6]    Daafi, Y., Chakir, A., Jourani, E.,  Ouabba., S.M. (2014). Geology and mine planning of phosphate deposits: Benguerir deposit Gantour Basin – Morocco. Procedia Engineering, (83), 70 – 75. https://doi.org/10.1016/j.proeng.2014.09.014.
[7]    Hakkou, R., Benzaazouab, M., Bussière, B. (2016). Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: Challenges and perspectives. Procedia Engineering, (138), 110 –118. https://doi.org/10.1016/
j.proeng.2016.02.068.
[8]    Kchikach, A., Jaffal, M., Aïfa, T., & Bahi, L. (2002). Cartographie de corps stériles sous couverture quaternaire par méthode de résistivités électriques dans le gisement phosphaté de Sidi Chennane (Maroc). Comptes Rendus Géoscience, 334(6), 379-386. https://doi.org/10.1016/S1631-0713(02)01767-4.
[9]    Boujo, A. (2002). About shape and development of sterile bodies in phosphatic deposits. Comptes Rendus Geoscience, 334(16), 1113-1114.
[10]  Kchikach, A., Andrieux, P., Jaffal, M., Amrhar, M.,  Mchichi, M., Boya, B.,  Amaghzaz, M., Veyrieras, T., & Iqizou,  K. (2006). Les  Sondages Électromagnétiques Temporels Commeoutil de Reconnaissance du Gisement Phosphaté de Sidi Chennane (Maroc): Apport à la Résolution d’un Problème D’Exploitation. Comptes Rendus Geoscience, 338, 289-296. https://doi:10.1016/j.crte.2006.02.003.
[11]   Baba, K., Bahi, L., Ouadif, L., & Akhssas, A. (2012). Mapping sterile bodies in the sidi chennane phosphatic deposit (Morocco) using geoelectrical investigations. International Journal of Engineering Research and Applications, (2), 2132–2136.
[12]  El Assel, N., Kchikach, A., Teixidó, T., Peña, J.A., Jaffal, M., Guerin, R., Lutz, P., Jourani, E.S., Amaghzaz, M. (2011). A Ground Penetrating Radar and Electrical Resistivity Tomography Prospection for Detecting Sterile Bodies in the Phosphatic Bearing of Sidi Chennane (Morocco). International Journal of Geosciences, (2), 406-413. https://doi:10.4236/
ijg.2011.24044.
[13]  Mandelbrot, B. (1967). How long is the coast of Britain? statistical self-similarity and fractal dimension. Science, 156, 636-638. https://doi.org/10.1126/science.156.3775.636.
[14]  Mandelbrot, B. (1975). Stochastic Models of the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-area Rule for Islands. Proceedings of the National Academy of Sciences, 72(10), 3823-3828.
[15]  Nie, Q., Shi, K., Gong, Y., Ran, F., Li, Z., Chen, R., Hua, L. (2020). Spatial-Temporal Variability of Land Surface Temperature Spatial Pattern: Multifractal Detrended Fluctuation Analysis.  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2010-2018. https://doi.org/10.1109/JSTARS.2020.2990479.
[16]  Kovács, D., Dabi, G., & Vásárhelyi, B. (2019). Image processing for fractal geometry-based discrete fracture network modeling input data: A methodological approach, Central European Geology, 62(1), 1-14. https://doi.org/10.1556/24.61.2018.09.
[17]  Liu, X., Liang, T., Wang, S., Nawnit, K. (2019). A Fractal Model for Characterizing Hydraulic Properties of Fractured Rock Mass under Mining Influence. Geofluids, 2019, 17. https://doi.org/10.1155/2019/8391803.
[18]  Wei, W., Xia, Y. (2017). Geometrical, fractal and hydraulic properties of fractured reservoirs: A mini-review. Advances in Geo-Energy Research, 1(1), 31-38. https://doi.org/10.26804/ager.2017.01.03.
[19]  Jorge, A.L., Luis, H.O., & Jerson, A.G. (2016). Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36(3), 125-132. http://dx.doi.org/10.15446/ing.investig.v36n3.56198.
[20] Marusina, M. Y. and Karaseva, E. A. (2019). Automatic Analysis of Medical Images Based on Fractal Methods. International Conference. Quality Management, Transport and Information Security, Information Technologies, 349-352, https://doi.org/10.1109/ITQMIS.2019.8928378.
[21]  Elblbesy, M. A., Attia. M. (2020). Optimization of fractal dimension and shape analysis as discriminators of erythrocyte abnormalities. A new approach to a reproducible diagnostic tool. Mathematical Biosciences and Engineering, 17(5), 4706-4717. https://doi.org/10.3934/mbe.2020258.
[22] Sun, T., Wang, X., Lin, D., Bao, R., Jiang, D., Ding, B., & Li, D. (2021). Medical image security authentication method based on wavelet reconstruction and fractal dimension. International Journal of Distributed Sensor Networks, 17(4). https://doi.org/10.1177/15501477211014132.
[23]  Chen Y. (2020). Fractal Modeling and Fractal Dimension Description of Urban Morphology. Entropy (Basel, Switzerland), 22(9), 961. https://doi.org/10.3390/e22090961.
[24] Ayad, A., Amrani, M., & Bakkali, S. (2019). Quantification of the disturbances of phosphate series using the box-counting method on geoelectrical images (Sidi Chennane, Morocco). International Journal of Geophysics, 1-12. https://doi.org/10.1155/2019/2565430.
[25]  Ayad, A., & Bakkali, S. (2019). Fractal assessment of the disturbances of phosphate series using lacunarity and succolarity analysis on geoelectrical images (Sidi Chennane, Morocco). Complexity, 1-12. https://doi.org/10.1155/2019/9404567.
[26]  Ayad, A. & Bakkali, S. (2018). Assessment of the geoelectrical anomalies of the disturbances of phosphate series using the triangular prism surface area method (sidi chennane -Morocco). Proceedings of the 2nd Conference on Geophysics for Mineral Exploration and Mining, Porto, Portugal, (2018), 1-5. https://doi.org/10.3997/2214-4609.201802743.
[27]  Witten, T.A., & Sander, L. M. (1981). Diffusion-limited aggregation is a kinetic critical phenomenon. Physical Review Letters, 47, 1400-1403. https://doi.org/10.1080/001075100409698.
[28] Bakkali, S., (2006). A resistivity survey of phosphate deposits containing hardpan pockets in Oulad Abdoun, Morocco. Geofisica Internacional, 45(1), 73-82.
[29] Bakkali, S. (2007). Enhancement of edges of Sidi Chennane phosphate “disturbances” using sun shading responses of resistivity data. Russian Geology and Geophysics, 48(9), 775-781. https://doi.org/10.1016/j.rgg.2006.12.012.
[30]  William, S. (1999). Order from Chaos. Science, 285 (5431).
[31]  Mendoza-Ponce, A., Figueroa-Soto, A., Soria-Caballero, D., Garduño-Monroy, V. H. (2018). Active faults sources for the Pátzcuaro–Acambay fault system (Mexico): fractal analysis of slip rates and magnitudes Mw estimated from fault length. Natural Hazards and Earth System Sciences, 18, 3121–3135. https://doi.org/10.5194/nhess-18-3121-2018.
[32]  Huang, J. G., Christian, J. M., McDonald, G. S. (2018). Spontaneous spatial fractal pattern formation in dispersive systems. Journal of Nonlinear Optical Physics & Materials, 26(01). https://doi.org/10.1142/S0218863517500096.
[33]  Bianciardi, G., Sorce, F., Pontenani, A., Ginori, F., Scaramuzzino, S., & Tripodi. (2018). Fractal Approaches to Image Analysis in Oncopathology. Austin Journal of Medical Oncology, 5(2), 1-5.
[34]  Suzuki, M.T. (2007). A three-dimensional box-counting method for measuring fractal dimensions of 3D models. In Proceedings of the Eleventh IASTED International Conference on Internet and Multimedia Systems and Applications (IMSA '07). ACTA Press, USA, 42–47.
[35]  Akkari, H., Bhouri, I., Dubois, P.,  Bedoui M.H.(2008). On the Relations Between 2D and 3D Fractal Dimensions: Theoretical Approach and Clinical Application in Bone Imaging. Mathematical Modelling of Natural Phenomena, 3 (6), 48-75. https://doi.org/10.1051/mmnp:2008081.