[1] Ding, J., Xiaozhi, C., Xiudi, J., Bin, W., & Jinmiao, Z. (2015).Application of AVF inversion on shale gas reservoir TOC prediction. Paper presented at the 2015 SEG Annual Meeting.
[2]Passey, Q., Creaney, S., Kulla, J., Moretti, F., & Stroud, J. (1990). A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74(12), 1777-1794.
[3] Lecompte, B., & Hursan, G. (2010). Quantifying source rock maturity from logs: how to get more than TOC from Delta Log R. Paper presented at the SPE Annual Technical Conference and Exhibition.
[4] Euzen, T., Power, M., Crombez, V., Rohais, S., Petrovic, M., & Carpentier, B. (2014). Lithofacies, Organic Carbon and Petrophysical Evaluation of the Montney and Doig Formations (Western Canada): Contribution of Quantitative Cuttings Analysis and Electrofacies Classification. Paper presented at the CSPG CSEG CWLS Joint Annual Convention, Calgary.
[5] Yuan, X., Lin, S., Liu, Q., Yao, J., Wang, L., Guo, H., et al. (2015). Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1), 34-43.
[6] Wang, P., Chen, Z., Pang, X., Hu, K., Sun, M., & Chen, X. (2016). Revised models for determining TOC in shale play: Example from Devonian Duvernay shale, Western Canada sedimentary basin. Marine and Petroleum Geology, 70, 304-319.
[7] Zhao, P., Mao, Z., Huang, Z., & Zhang, C. (2016). A new method for estimating total organic carbon content from well logs. AAPG Bulletin, 100(8), 1311-1327.
[8] Zhao, P., Ma, H., Rasouli, V., Liu, W., Cai, J., & Huang, Z. (2017). An improved model for estimating the TOC in shale formations. Marine and Petroleum Geology, 83, 174-183.
[9] Nie, X., Wan, Y., & Bie, F. (2017). Dual-shale-content method for total organic carbon content evaluation from wireline logs in organic shale. Open Geosciences, 9(1), 133-137.
[10] Huang, Z., & Williamson, M. A. (1996). Artificial neural network modelling as an aid to source rock characterization. Marine and Petroleum Geology, 13(2), 277-290.
[11] Kamali, M. R., & Mirshady, A. A. (2004). Total organic carbon content determined from well logs using ΔLogR and Neuro-Fuzzy techniques. Journal of Petroleum Science and Engineering, 45(3-4), 141-148.
[12] Kadkhodaie-Ilkhchi, A., Rahimpour-Bonab, H., & Rezaee, M. (2009). A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran. Computers & Geosciences, 35(3), 459-474.
[13] Sfidari, E., Kadkhodaie-Ilkhchi, A., & Najjari, S. (2012). Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems. Journal of Petroleum Science and Engineering, 86, 190-205.
[14] Alizadeh, B., Najjari, S., & Kadkhodaie-Ilkhchi, A. (2012). Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data:A case study of the South Pars Gas Field, Persian Gulf, Iran. Computers & Geosciences, 45, 261-269.
[15] Alizadeh, B., Maroufi, K., & Heidarifard, M. H. (2018). Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran. Journal of Petroleum Science and Engineering, 167, 857-868 .
[16] Khoshnoodkia, M., Mohseni, H., Rahmani, O., & Aali, J. (2010). Toc Determination of Gadvan Formation in South Pars Gas Field, Using Artificial Neural Network Technique. Paper presented at the GEO 2010.
[17] Mahmoud, A. A. A., Elkatatny, S., Mahmoud, M., Abouelresh, M., Abdulraheem, A., & Ali, A. (2017). Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. International Journal of Coal Geology, 179, 72-80 .
[18] Zhu, L., Zhang, C., Zhang, C., Wei, Y., Zhou, X., Cheng, Y., et al. (2018). Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves. Journal of Geophysics and Engineering, 15(3), 1050-1061.
[19] Tan, M., Liu, Q., & Zhang, S. (2013). A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics, 78(6), D445-D459 .
[20] Amiri Bakhtiar, H., Telmadarreie, A., Shayesteh, M., Heidari Fard, M., Talebi, H., & Shirband, Z. (2011). Estimating total organic carbon content and source rock evaluation, applying ΔlogR and neural network methods: Ahwaz and Marun oilfields, SW of Iran. Petroleum Science and Technology, 29(16), 1691-1704.
[21] Wang, P., Peng, S., & He, T. (2018). A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China. Journal of Natural Gas Science and Engineering, 55, 1-15 .
[22] Rui, J., Zhang, H., Zhang, D., Han, F., & Guo, Q. (2019). Total organic carbon content prediction based on a support-vectorregression machine with particle swarm optimization. Journal of Petroleum Science and Engineering.
[23] Asgari Nezhad, Y., Moradzadeh, A., & Kamali, M. R. (2018). A new approach to evaluate Organic Geochemistry Parameters by geostatistical methods: A case study from western Australia. Journal of Petroleum Science and Engineering, 169, 813-824 .
[24] An, P., & Cao, D. (2018). Shale content prediction based on LSTM recurrent neural network. Paper presented at the SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, Beijing, China, 17-19 September 2018.
[25] Zhu, L., Zhang, C., Zhang, C., Zhang, Z., Nie, X., Zhou, X., et al. (2019). Forming a new small sample deep learning model to predict total organic carbon content by combining unsupervised learning with semisupervised learning. Applied Soft Computing, 83, 105596.
[26] Zhu, L., Zhang, C., Zhang, C., Zhang, Z., Zhou, X., Liu, W., et al. (2020). A new and reliable dual model-and data-driven TOC prediction concept: A TOC logging evaluation method using multiple overlapping methods integrated with semi-supervised deep learning. Journal of Petroleum Science and Engineering, 106944.
[27] Wang, K., Pang, X., Zhang, H., Hu, T., Xu, T., Zheng, T., et al. (2019). Organic geochemical and petrophysical characteristics of saline lacustrine shale in the Dongpu Depression, Bohai Bay Basin, China: Implications for Es3 hydrocarbon exploration. Journal of Petroleum Science and Engineering, 106546 .
[28] Mobil Oil Australia, 1983. Well completion report White Hills-1, Exploration Permit 134, Canning Basin, Western Australia. Geological Survey of Western Australia, S2086A2.
[29] Apak, S.N. and Carlsen, G.M., (1996). A Compilation and Review of Data Pertaining to the Hydrocarbon Prospectivity in the Canning Basin: Geological Survey of Westen Australia, Record 1996/10
[30] Weisberg, S. (2005). Applied linear regression (Vol. 528): John Wiley & Sons.
[31] Lashin, A., & El Din, S. S. (2013). Reservoir parameters determination using artificial neural networks: Ras Fanar field, Gulf of Suez, Egypt. Arabian Journal of Geosciences, 6(8), 2789-2806.
[32] Kainthola, A., Singh, P., Verma, D., Singh, R., Sarkar, K., & Singh, T. (2015). Prediction of strength parameters of Himalayan rocks: a statistical and ANFIS approach. Geotechnical and Geological Engineering, 33(5), 1255-1278.
[33] Kacprzyk, J. (2008). Studies in Computational Intelligence, Volume 100.
[34] Funahashi, K.-i., & Nakamura, Y. (1993). Approximation of dynamical systems by continuous-time recurrent neural networks. Neural networks, 6(6), 801-806.
[35] Hermans, M., & Schrauwen, B. (2013). Training and analyzing deep recurrent neural networks. Paper presented at the Advances in neural information processing systems.
[36] Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., (2009). GSA: a gravitational search algorithm. Information sciences, 179(13), pp.2232-2248.
[37] Pelusi, D., Mascella, R., Tallini, L., Nayak, J., Naik, B., & Deng, Y. (2019). Improving exploration and exploitation via a Hyperbolic Gravitational Search Algorithm. Knowledge-Based Systems, 105404.
[38] Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
[39] Watkins, W. A., & Schevill, W. E. (1979). Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. Journal of Mammalogy, 60(1), 155-163.
[40] Tissot, B. P., & Welte, D. H. (2013). Petroleum formation and occurrence: Springer Science & Business Media.
[41] Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., & Hackley, P. C. (2012). Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology, 99, 54-112.