[1] Yousefi, M., & Kamkar Rouhani, A. (2010). Principle of mineral potential modeling (Vol. 1). Amir Kabir University, Tehran.
[2] Carranza, E.J.M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier.
[3] Carranza, E.J.M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26(4), 379-410.
[4] Kashani, S.B.M., Abedi, M., & Norouzi, G.H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9(2), 167-181.
[5] Pan, G. & Harris, D. (2000). Information synthesis for mineral exploration: Oxford Univ. Press, New York.
[6] Carranza, E.J.M. & Hale, M. (2002). Where porphyry copper deposits are spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11(1), 45-59.
[7] Nykänen, V., & Salmirinne, H. (2007). Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, 44, 251-269.
[8] Agterberg, F., & Bonham-Carter. G.F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. in Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (APCOM), Golden, Colorado.
[9] Carranza, E.J.M., & Hale, M. (2001). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology, 10(3), 165- 175.
[10] Mejía-Herrera, P.,Royer, J.J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24(3), 275-290.
[11] Abedi, M., & Norouzi, G.H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35-45.
[12] Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. H. Rahimi et al. / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 19-28 27 Natural Resources Research, 17(1), 29-48.
[13] Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12(4), 241-255.
[14] Porwal, A., Carranza, E.J.M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Natural resources research, 12(3), 155-171. [15] Porwal, A., Carranza, E.J.M., & Hale, M. (2004). A hybrid neuro[1]fuzzy model for mineral potential mapping. Mathematical Geology, 36(7), 803-826.
[16] Singer, D.A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan. Mathematical Geology, 28(8), 1017-1023.
[17] Agterberg, F., Bonham-Carter, G.F., & Wright, D. (1990). Statistical pattern integration for mineral exploration, in Computer applications in resource estimation. Elsevier, 1-21.
[18] Bonham-Carter, G.F. (1989). Weights of evidence modeling: a new approach to mapping mineral potential. Statistical applications in the earth sciences, 171-183.
[19] Abedi, M., Norouzi, G.H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272-283.
[20] Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116-126.
[21] Carranza, E.J.M., & Laborte, A.G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35-50.
[22] Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59(3), 556- 572.
[23] Abedi, M., Norouzi, G.H., & Torabi, S.A. (2013). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6(10), 3601-3613.
[24] Eberle, D.G., & Paasche, H. (2012). Integrated data analysis for mineral exploration: A case study of clustering satellite imagery, airborne gamma-ray, and regional geochemical data suites. Geophysics, 77(4), 167-176.
[25] Paasche, H., & Eberle, D.G. (2009). Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting. Exploration Geophysics, 40(3), 277-287.
[26] Ghezelbash, R., Maghsoudi, A., & Carranza, E.J.M. (2019). Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. Journal of Geochemical Exploration, 199, 90-104.
[27] Daviran, M., Maghsoudi, A., Cohen, D., Ghezelbash, R., & Yilmaz, H. (2019). Assessment of Various Fuzzy c-Mean Clustering Validation Indices for Mapping Mineral Prospectivity: Combination of Multifractal Geochemical Model and Mineralization Processes. Natural Resources Research, 29(1), 229- 246.
[28] Abedi, M., Torabi, S.A., Norouzi, G.H., Hamzeh, M., & Elyasi, G.R. (2012). PROMETHEE II: a knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255-263.
[29] Bonham-Carter, G.F., (1994). Geographic information systems for geoscientists-modeling with GIS. Computer methods in the geoscientists, 13, 398.
[30] Carranza, E.J.M., Mangaoang, J.C., & Hale, M., (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8(2), 165-173.
[31] Mirzaei, M., Afzal, P., Adib, A., Khalajmasoumi, M., & Zia Zarifi, A. (2014). Prospection of Iron and Manganese Using Index Overlay and Fuzzy Logic Methods in Balvard 1: 100,000 Sheet, SE Iran. Iranian Journal of Earth Sciences, 6(1), 1-11.
[32] Sadeghi, B., Khalajmasoumi, M., Afzal, P., & Moarefvand, P. (2014). Discrimination of iron high potential zones at the zaghia iron ore deposit, bafq, using index overlay GIS method. Iran J Earth Sci, 6, 91-98.
[33] Sadeghi, B., & Khalajmasoumi, M. (2015). A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renewable and Sustainable Energy Reviews, 43, 818-831.
[34] Abedi, M., Torabi, S.A., & Norouzi, G.H. (2013). Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Bollettino di Geofisica Teorica ed Applicata, 54(2).
[35] An, P., Moon, W.M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27(1), 1-11.
[36] Chung, C.J.F., & Moon, W.M. (1991). Combination rules of spatial geoscience data for mineral exploration. Geoinformatics, 1991. 2(2): p. 159-169.
[37] Moradi, M., Basiri, S., Kananian, A., & Kabiri, K. (2015). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Informatics, 8(1), 197-205.
[38] Abedi, M., Norouzi, G.H., & Fathianpour, N. (2013). Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556-567.
[39] Abedi, M., Norouzi, G.H., & Fathianpour, N. (2015). Fuzzy ordered weighted averaging method: a knowledge-driven approach for mineral potential mapping. Geophys Prospect, 63, 461-477.
[40] Abedi, M., Torabi, S.A., Nourozi, G.H., & Hamzeh, M. (2012). ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping. Journal of applied geophysics, 87, 9-18.
[41] Moon, W.M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 711-720.
[42] Tangestani, M.H., & Moore, F. (2002). The use of Dempster–Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4(1), 65-74.
[43] Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: a case study in Siahrud area (NW, Iran). Earth Science Informatics, 8(1), 207- 28 H. Rahimi et al. / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 19-28 220.
[44] Yousefi, M., & Carranza, E.J.M. (2016) Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1), 3-18.
[45] Yousefi, M., & Carranza, E.J.M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.
[46] Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition. Elsevier Inc.
[47] Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.
[48] Saha, S., & Bandyopadhyay, S. (2012). Some connectivity based cluster validity indices. Applied Soft Computing, 12(5), 1555-1565.
[49] Ghezelbash, R., Maghsoudi, A., & Carranza, E.J.M. (2020). Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Computers & Geosciences, 134, 104335.
[50] Rezapour, M.J., Abedi, M., Bahroudi, A., & Rahimi, H. (2019). A clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting. Geopersia, 10(1).
[51] Cheng, Q., Agterberg, F., & Ballantyne, S. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2),109-130.
[52] Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238.
[53] Forster, H. (1976). Continental drift in Iran in relation to the Afar structure. Afar between continental and oceanic rifting (VII), 182- 190.
[54] Elyasi, G.R. (2009). Mineral potential mapping in detailed stage using GIS in one of exploration prospects of Kerman Province. Master of Science Thesis, University of Tehran (published in Persian).
[55] Khan Nazer, N., Emami, M., & Ghaforie, M. (1995). Geological map of Chahargonbad. Geological survey of Iran.
[56] Yazdi, Z., Jafari Rad, A.R., & Kheyrollahi, H. (2015). Recognition of geological features and alteration zones related to porphyry copper mineralization using airborne geophysical data a case study: Chahargonbad1: 100000 geological map, Kerman province, central Iran.
[57] Elyasi, G.R., Bahroudi, A., Abedi, M., & Rahimi, H. (2020). Weighted Photolineaments Factor (WPF): An Enhanced Method to Generate a Predictive Structural Evidential Map with Low Uncertainty, a Case Study in Chahargonbad Area, Iran. Natural Resources Research, 1-33.
[58] Nabighian, M.N. (1974). Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross[1]section. Geophysics, 39(1), 85-92.
[59] Ford, K., Keating, P., & Thomas, M. (2007). Overview of geophysical signatures associated with Canadian ore deposits. Geological Association of Canada. Mineral Deposits Division, Special Publication, (5), 939-970.
[60] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters (Vol. 3). Journal of Cybernetics.
[61] Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms-NY. Plenum Press.
[62] Barbakh, W.A., Wu, Y., & C. Fyfe, C. (2009). Non-standard parameter adaptation for exploratory data analysis (Vol. 249). Springer.
[63] Jain, A.K., Murty, M.N., & Flynn, P.J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
[64] Kohonen, T. (2012). Self-organization and associative memory (Vol. 8). Springer Science & Business Media.
[65] Kohonen, T., & Somervuo, P. (1998). Self-organizing maps of symbol strings. Neurocomputing, 21(1-3), 19-30.
[66] Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on neural networks, 11(3), 586- 600.
[67] Abedi, M., Mohammadi, R., Nourozi, G.H., & Mir Mohammadi, M.S. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9(6), 482