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A B S T R A C T 

 

This work presents a hybrid-based clustering approach for mineral potential mapping (MPM) of porphyry-type Cu mineralization at Kerman 
province in the SE of Iran. Whereby a multidisciplinary geospatial data set was processed and integrated in the Chahargonbad district. Data-
driven prediction-area (P-A) plots were drawn for each evidence layer derived from geological, geochemical, geophysical and satellite imagery 
data. The P-A plots provide insight into the weight of evidence for synthesizing all geospatial layers. Out of many knowledge-driven methods 
which biasing from experts' opinions, index overlay and fuzzy operators were employed to find out an optimum Cu favorability map through 
calculating an efficiency index representing the performance of each MPM. A concentration-area (C-A) fractal model was implemented to 
separate the mineral favorability map into some populations to ensure correct determining the cluster numbers. Clusters number is a 
prerequisite which must be defined correctly to increase the performance of clustering analysis for generating reliable results in MPM. Such 
an appropriate number of clusters can be incorporated in running three prevalent groups of clustering methodologies as data-driven 
approaches in MPM. They are self-organizing map, fuzzy c-means, and k-means algorithms. One of the reasons for this tendency to consider 
a hybrid-based method is that it overcomes the shortcomings of the both methods (bias of experts’ opinions and unknown clusters number) 
in mineral favorability mapping. The unknown number of clusters was determined through a knowledge-driven method, and then it was 
passed to an unsupervised data-driven method, i.e. clustering algorithm. This hybrid method produces synthesized maps in close association 
with known porphyry-Cu mineralization in the Chahargonbad area. 
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1. Introduction

Various sources of uncertainty pertaining to a multidisciplinary 
geospatial data set impact on the mineral exploration task. Whereby 
such diversities arising from natural conditions of sophisticated 
geological models need to be handled systematically for targeting sought 
deposits. It means that it is genuinely a tough task to accurately inform 
the potential of an investigated area through exploratory data in 
association with ore mineralization. To tackle the variety of ingredients 
in multidisciplinary geospatial data, mineral potential mapping (MPM) 
is a panacea  to delimit the sought area in district or deposit scales [1]. 
Meanwhile such processing ameliorates the risk, time and cost of an 
exploration program. Hence, to increase the success rate of this task as 
an active area of research in the mineral exploration community, many 
researchers have focused their attempts to develop novel algorithms in 
the MPM, showing great improvement in identifying the locations of 
the true ore-bearing anomalies.  

   Among MPM methodologies developed in the last two decades, 
three categories of data integration are much investigated, namely (1) 
knowledge-driven, (2) data-driven, and (3) hybrid [2-5]. Of note is that 
for implementing the supervised versions of the data-driven methods, 
the locations of known mineral deposits are required as "training points" 
to computationally find out their spatial relationships with specific 

geological, geochemical and geophysical features [2, 4] Their blind 
relationships are sought to assign the importance weight of each 
evidence layer [4, 6]. Such evidence layers are ultimately integrated into 
a single mineral favorability map, showing foremost favorable regions 
among studied area in association with the sought deposit type [4, 7]. 
Examples of the supervised data-driven methods are logistic regression 
[8-10], neural networks [11-16], weights of evidence [17, 18], support 
vector machine [19, 20], and random forests [21, 22]. Another point 
worth taking into account concerns to implement data-driven methods 
in cases of no training points. A possible scenario to strive for MPM is 
the utilization of the unsupervised versions of the data-driven methods 
as clustering algorithms, which indeed divide multi-dimensional feature 
(or evidence layer) space into some clusters [23-27]. 

   Another group of MPM proposed in the literature is the knowledge-
driven methods that are on a basis of geoscientists’ opinions [4]. This 
kind of processing is sometimes time consuming and somewhat 
arbitrary. Main well-known approaches of this group are Boolean logic 
[18, 28, 29], index overlay [28-33], fuzzy logic [4, 33-37], outranking 
methods [28, 38-40], and evidential belief functions [41, 42]. Hybrid 
algorithms are a combinatory of knowledge- and data-driven methods 
for tackling the weakness of each group of MPM when running 
individually [15, 43-45]. 

   In cases of lack of accessing to training points for running 
supervised versions of the data-driven methods, MPM falls under the 
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umbrella term of unsupervised algorithms of clustering. Clustering is a 
process for organizing data in groups whose members are similar. It is 
applied in a variety of fields, including image processing, data mining, 
pattern recognition and machine learning, with abilities to manage a 
large amount of information by categorizing them into several clusters. 
Clustering can reduce the feature vectors’ dimensions. The clustering 
process includes several steps of feature selection, proximity measure, 
clustering criterion, clustering algorithm, validation of the results, and 
its interpretation [23, 46]. Unknown number of clusters which has 
critical impact on the synthesized evidence layers, should be selected 
appropriately to divide prospect zone into some populations in 
association with geological setting of the studied region. An integral part 
of any clustering analysis in MPM is the validation of the quality of the 
obtained clusters, where the determination of clusters number from 
mathematical indices may bear little resemblance to the true geology of 
a prospect zone. Correct determination of the clusters number has been 
investigated in multiple fields of engineering often inferred from 
mathematical indices [47-49]. Following the same line of thought as 
Rezapour et al. (2020), this work has examined a knowledge-guided 
clustering methodology, where the optimum number of clusters is 
geologically determined through implementing a fractal analysis of 
synthesized evidence layers by index overly and fuzzy gamma operators 
[50]. Porphyry-Cu favorability maps were plotted into four geologically 
meaningful clusters by running fuzzy C-means (FCM), K-means (KM) 
and self-organizing map (SOM) algorithms. Whereby, the desired 
cluster in association with porphyry-Cu mineralization was extracted.  

   The FCM clustering algorithm was developed by Dunn [60] and 
corrected by Bezdek [61]. This algorithm is often used in pattern 
recognition. The FCM algorithm allows data to belong to two or more 
clusters. FCM is sensitive to noise, outlier values and initial conditions, 
and requires a long computational time [62]. The KM clustering 
algorithm is the simplest and most common algorithm that uses mean 
squared quantization error. The above algorithm first randomly 
determines the cluster centers. These centers should be carefully 
selected because different initial centers produce different results. The 
main advantage of the method is its simple implementation, but there 
are problems that should always be taken into consideration. The KM 
algorithm has a high sensitivity to randomly selected cluster centers. 
This means that there is a possibility of stopping the algorithm at a local 
minimum. This algorithm can be implemented several times to reduce 
this effect [63].                                                        

    The SOM clustering is a kind of artificial neural network that 
introduced by Kohonen [64]. This neural network is trained by 
unsupervised learning [23]. The self-organizing map algorithm can 
convert nonlinear statistical relationships between input data into 
simple geometric relationships. This indicates a nonparametric 
recursive regression relation, so that regression is performed recursively 
with each instance. Accordingly, it can be claimed that the SOM can 
check and correct the error rate [65, 66]. Indeed, it includes two-
dimensional relationships as a network of map units that connect to 
neighborhoods by a neighborhood relationship. The number of map 
units, which often varies from several to several thousand, determines 
the accuracy and capability of SOM generalization. Each neuron is 
represented by a pre-sample weighted vector containing the input 
vector. In the training phase, the SOM creates a network that blends the 
mass of input data together. Data that are located close to each other in 
the input area, are mapped into map units. So, SOM is a topology map 
that allows the display, interpretation, and arrangement of clustering 
and is able to map the data input space to a two-dimensional network of 
map units.  

   The remainder of this work has been prepared as following sections. 
Workflow of this study has been summarized in the second section. 
Geological setting of the Chahargonbad district is presented in the 
section third. Geospatial data set is constructed in the section fourth, 
where a multidisciplinary database is designed from geophysical 
(magnetometry and radiometry data), geological, geochemical and 
satellite imagery data. In the fifth section, evidence layers are integrated 
through a hybrid clustering algorithm. After determining the weight of 
each evidence through plotting a prediction-area (P-A) curve [45], 

optimized knowledge-driven MPM is generated. An efficiency index is 
used to distinguish the most efficient favorability map over the rest ones. 
A concertation-area (C-A) fractal curve [51] is subsequently plotted for 
the synthesized evidences to acquire the number of clusters. Then, it 
passes to the clustering methodologies that are SOM, FCM, and KM, 
where they plot evidence layers into some clusters. Then in the sixth 
section, the performance and quality of clustered mineral favorability 
maps are discussed by comparison to the Porphyry-Cu occurrences in 
the prospect region. Finally, the main achievements of this hybrid 
method are summarized in the conclusion. 

2. Workflow of this study 

Since knowledge-based methods suffer from bias weighting to each 
evidence layer, data-driven methods can resolve this issue in MPM. This 
study follows a hybrid-based algorithm to implement three clustering 
methods in two steps (Fig.1). In step 1, after constructing a geospatial 
database form a multidisciplinary data set, the P-A plot as a data-driven 
approach is portrayed to determine the weight of each evidence layer. 
These weights are incorporated in running knowledge-based methods 
of index overlay and fuzzy operator to find out an optimum synthesized 
mineral favorability map, where an efficiency index criterion is used to 
evaluate the efficiency of each MPM. To end the first step, a C-A fractal 
method is applied to the best mineral favorability map, extracting the 
number of populations that is indeed the number of clusters for the 
second step. For running any clustering methodology in the second step, 
such a clustering number is assumed. Then, each generated cluster is 
evaluated to match it with the background geological setting of the 
studied area, leading to introducing the main cluster in association with 
the porphyry-Cu mineralization. Clustering output suffers less from 
experts’ bias weighting to evidence layers and can be more reliable 
rather than the knowledge-based outputs.       

 
Fig. 1 The proposed diagram for the hybrid-based clustering algorithm in MPM. 

3. Geological setting of the Chahargonbad district  

Urumieh-Dokhtar magmatic arc (UDMA) is associated with the 
subduction of the Neo-Tethys oceanic plate and then the Arabic plate 
below Iran during the middle Miocene (about 13 million years ago) [52]. 
UDMA is the most important Iranian metallogeny belt, and indeed 
matches on the Alpine-Himalayan orogenic universal belt. This 
magmatic belt is affected by alpine orogeny phases from the time of the 
Mesozoic to the late Cenozoic. UDMA is the main host of the porphyry 
Cu deposits in Iran (Fig.2a), along with other deposits related such as 
Au and Mo pertaining to this geodynamic origin. This ore-bearing belt 
is arising from the developments caused by the closure of the Neo-
Tethys ocean, or in other words the digestion of the Neo-Tethys oceanic 
crust through its subduction to the continental subfloor. Most porphyry 
Cu deposits of Iran, such as Sarcheshmeh, Miduk and Sungun copper, 
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are occurred along this belt [53, 54]. UDMA includes two major 
mineralization areas, the Chahargonbad region to the south and the 
Sungun region to the NW. Dominant mineralization in this region is 
porphyry-Cu associated with the Eocene-Miocene plutonic bodies and 
volcanic rocks [54]. 

   The Chahargonbad area is situated at the NE of the city of Sirjan, 
in Kerman province of Iran and in the mountainous region (Fig. 2a). The 
largest outcrops of rock units in the Chahargonbad district are the 
Eocene volcano-sedimentary rocks. At the end of the Miocene, tectonic 
movements have caused the folding of the rock masses with a NW- SE 
trend [55]. It’s worth pointing out that magmatic bodies have intruded 
older rocks in the region at five phases as follows, 

   (1) The colored melange complex includes a set of mafic and ultra-
mafic intrusive rocks, spilitic rocks, volcanic breccia and calcareous 
sediments. It is generally believed that this structure concerns to the 
oceanic crust that was formed during the Cretaceous. 

   (2) Andesitic-trachytic lavas with tuffs and other pyroclastic rocks 
related to the Eocene.  

   (3) Granite-granodiorite rocks of the Eocene.  
   (4) Intrusive bodies of quartz diorite-granodiorite related to lower 

Miocene. The aforementioned rocks are of particular importance due to 
the fact that they are an important factor in the formation of copper ores 
in the region.  

   (5) Hypabyssal rocks of the trachy-basalt related to the Pliocene. At 
this phase, dykes and many sills with an irregular trend have cut off the 
older rocks [55, 56]. 

   Plutonic masses have intruded at two main phases. Older masses 
include post Eocene-Oligocene granite and granodiorite extensively in 
the region, and younger masses are Miocene quartz diorite combination 
mainly spread in some parts of the Chahargonbad area. The utmost 
importance rock type in the region in association with the porphyry Cu 
mineralization is quartz diorite. Therefore, these bodies have more 
priority for porphyry Cu exploration. The general trend of these masses 
is along the NW-SE direction. Table 1 presents the geological 
characteristics of 28 deposits/prospects in the Chahargonbad district 
(Fig. 2b), where they are mostly controlled by the intrusive magmatic 
and hydrothermally units.  

 
Fig. 2 (a) The location of the studied area on a map of tectono-sedimentary zones 

of Iran, and (b) a simplified geological map of the Chahargonbad area [55, 57]. 

 

Table 1. The geological descriptive summaries of 28 deposits/prospects in the 
studied region. 

# Name Ore type # Name Ore type 

1 Sarbagh Intrusive 
Porphyry 

15 Roode Tangoo Intrusive 
Hydrothermal 

2 Gah Dij -  16 Roode 
Shelang 

Volcanic 
Hydrothermal 

3 Band Bagh Volcanic 
Hydrothermal 

17 Takht (Soltan 
Hosein) 

Skarn 

4 Koohpanje(Bande 
Mozafar) 

Intrusive 
Porphyry 

18 Chahargonbad Intrusive Vein 

5 Chehel Tone 
Shomali 

Volcanic 
Hydrothermal 

19 Takhte 
Chahargonbad 

 - 

6 Koohpanje1  - 20 Takht Bonie Skarn 
7 Koohpanje2  - 21 Takht Gonbad 

Sirjan 
Intrusive 
Porphyry 

8 Koohpanje3  - 22 Takht Gonbad 
Sirjan 1 

Intrusive 
Porphyry 

9 Koohpanje4  - 23 Takht Gonbad 
Sirjan 2 

Intrusive 
Porphyry 

10 North Ab Talkhon Intrusive Vein 24 Bolboli(Soltan 
Hosein) 

Intrusive Vein 

11 Central Ab Talkhon Intrusive Vein 25 Parsan - 
12 West Ab Talkhon Intrusive Vein 26 Zangu - 
13 South Ab Talkhon Intrusive Vein 27 Bab Zanguee1 - 
14 Chehel Tone Jonoobi Volcanic 

Hydrothermal 
28 Bab Zanguee2 - 

4. Geospatial data sets 

In this study, eight geospatial evidence layers are used for MPM. They 
are extracted from geological map, satellite images, stream sediment 
geochemical samples, and airborne geophysics (radiometric and 
magnetic data) to construct a multidisciplinary database. 

4.1. Geological layers 

Three evidential layers were extracted by expert decision makers 
from the geology map. Miocene quartz diorite was selected as the main 
host rock for copper mineralization in the study area [54, 57]. Hence, 
four 125-m-interval buffers were considered around this unit in Fig. 3a 
to highlight the importance of adjacent regions. The alteration layer, 
depicting advanced argillic, phyllic, iron oxide (jarosite) and argillic 
which were distinguished from the processing of satellite imagery data 
(ASTER and ETM data), was prepared in Fig. 3b [57]. The faulted and 
lineament features were extracted from the fault traces derived from 
geological field survey, and hidden faults from processing airborne 
magnetic data. Then, four 100-m-interval buffers were considered 
around these lineaments to capture the importance of those features 
(Fig. 3c). As can be seen from evidential layers in Fig. 3, deposits and 
prospects are located in proximity to those favorable regions, while fault 
evidence could closely localize most of these targets in Fig. 3c.  
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Fig. 3 The geological evidence layers, (a) rock type, (b) alteration, and (c) fault. 

4.2. Geochemical layers 

Geochemical data used in this study were collected by an experienced 
group under the supervision of the Geological Survey of Iran (GSI) at a 
scale of 1:100,000. They were analyzed during a systematic exploration 
project through the ICP-MS instrument. Totally 846 samples were 
collected from the stream sediments in the Chahargonbad district, while 
only elements of Zn, Pb, Cu, Mo and Ag have been processed in this 
study. It’s worth pointing out that a logarithmic conversion was carried 
out to normalize the distribution of elements which indeed can amplify 
spatial correlation among footprint elements of Cu-bearing targets. 
After statistical analysis of samples, two elements of Pb and Zn had 
meaningful spatially correlation with the Cu element in this region. The 
statistical characteristics of these elements are presented in Table 2. In 
Table 3, the Pearson’s linear correlation coefficients of these elements 
have been tabulated. Three geochemical evidences were respectively 
prepared for Cu, Pb and Zn in Figs. 4a, 4b and 4c. In the NW of the area, 
deposits/prospects are much correlated with the Cu evidence layer, 
while in southern portions Pb and Zn evidences have better consistency 
with the Cu occurrences.   

 
Table 2. Statistical summaries of the main geochemical elements (in ppm unit).    

Parameters Cu Mo Pb Zn Ag 

Mean 65.0686 1.7293 23.8168 113.8073 .0270 

Median 58.0000 2.0000 17.0000 94.0000 .0200 

Mode 52.00 2.00 14.00 70.00 .02 

Std. Deviation 53.44284 1.03376 25.29473 80.37311 .08229 

Variance 2856.137 1.069 639.823 6459.836 .007 

Skewness 13.289 4.142 6.124 2.572 11.769 

Kurtosis 257.100 29.814 57.273 11.581 136.822 

Range 1198.00 11.00 319.00 750.00 .98 

Minimum 2.00 1.00 2.00 2.00 .02 

Maximum 1200.00 12.00 321.00 752.00 1.00 

Table 3. The Pearson’s linear correlation coefficient between concentration of 
five elements.    

Cu 1     

Mo -0.005 1    

Pb 0.428 -0.171 1   

Zn 0.411 -0.148 0.529 1  

Ag 0.094 -0.061 0.107 0.177 1 

 Cu Mo Pb Zn Ag 

 

 

 

 
Fig. 4 The geochemical evidence layers, (a) Cu, (b) Pb, and (c) Zn. 

4.3. Geophysical layers 

Airborne geophysical survey (magnetometry and radiometry) was 
carried out in 1977 under the supervision of the Atomic Energy 
Organization of Iran. Flight line spacing and altitude of the survey were 
chosen 500 and 150 m, respectively. Directional derivatives of both the 
reduced-to-pole magnetometry data (RTP) along with the upward 
continued data were calculated to enhance respectively the borders of 
shallow and deep-seated magmatic sources in association with the 
porphyry-type Cu-bearing mineralization. As firstly stated by Nabighian 
[58], the amplitude of the directional derivatives can enhance the 
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borders and the main traces of bodies responsible for magnetic 
anomalies. Figure 5a presents the evidence map of intrusive bodies 
buffered with some narrow rings to highlight the importance of adjacent 
areas. The ratio of K/Th was also calculated to delineate regions 
controlled by potassic and phyllic alteration along with rock units 
responsible for probable Cu occurrences [59]. Figure 5b shows the 
radiometric evidence layer more compatible with deposits/prospects in 
comparison to the intrusive bodies.   

 

 
Fig. 5 The geophysical evidence layers, (a) intrusive bodies from magnetometry 

data, and (b) K/Th ratio.  

5. Hybrid-based clustering methodology 

Exploratory geospatial data set consists of eight evidence layers that 
were derived from three criteria of geology (rock type, alteration and 
fault), geochemistry (Cu, Pb and Zn), and geophysics (intrusive bodies 
and K/Th). Figure 6 presents a decision tree network for inferring final 
mineral favorability map.  

 
Fig.6 Decision tree network for inferring final mineral favorability map and the 

weight extracted from the P-A plot. 

5.1. Knowledge-driven method 

Since evidence layers have different weights of importance in 
synthesizing all layers, the P-A plots are being drawn to determine each 
layer’s weight on the basis of simultaneous consideration of the ore 
prediction rate and the area of favorability. For a more rigorous and in-

depth introduction to the P-A plot, readers can refer to Yousefi and 
Carranza [45]. To determine the weight of each layer, first, the value of 
the ore prediction rate at the point of intersection is divided by its 
prediction area, and then the normalized density is obtained. The 
natural logarithm of the normalized density is calculated to obtain the 
weight of each layer. Table 4 has summarized the procedure of 
generating a data-driven approach for assigning weights. The locations 
of known deposits/prospects listed in Table 1, were taken into 
consideration for depicting all the P-A plots.  Figure 7 presents all the P-
A plots derived from three main groups of criteria that were geological, 
geochemical and geophysical features. This analysis indicates that the 
utmost important layers are faults and intrusive bodies. It reveals the 
close connection between the Cu deposition systems with the faults and 
intrusive bodies. Intrusive bodies as the main source of ore-forming 
fluids and faults as transfer structures to the ground level, always are key 
factors in the constitution of the porphyry deposits. The results of this 
research demonstrate that the geochemical layers have lower impact on 
ore formation, and the cause of this result is that geochemical samples 
were surveyed from the ground level. Thus, they illustrate elements 
distribution in shallow level with lower information from depth. 

Table 4. The data-driven weight extraction through the P-A plots of eight 
evidence layers. 

Layers Prediction 
area (%) 

Prediction 
rate (%) 

Normalized 
density 

Normalized 
weight 

Rock Type 43 57 1.33 0.105 
Alteration 44 56 1.27 0.090 
Fault 34 66 1.94 0.246 
Cu 44 56 1.27 0.090 
Pb 48 52 1.08 0.030 
Zn 45 55 1.22 0.074 
Intrusive Body 34 66 1.94 0.246 
K/Th Ratio 42 58 1.38 0.120 

Upon determining the weight of evidential layers through the P-A 
plots, two knowledge-based method of index overlay (IO) and fuzzy 
gamma operator (FGO) were utilized to integrate all layers in a single 
mineral favorability map. Figure 8b presents a potential map derived 
from the IO method which has been reclassified into four populations 
on the basis of its C-A fractal curve shown in Fig. 8a. The P-A plot of this 
favorability map shows that the amounts of ore prediction rate and 
potential area at the intersection point are equal to 72 % and 28%, 
respectively (Fig.8c). Note that these values present better results 
compared to those from individual evidence layer tabulated in Table 4. 
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Fig.7 The P-A plots for eight evidence layers of (a) rock type, (b) alteration, (c) 
fault, (d) Cu, (e) Pb, (f) Zn, (g) intrusive bodies, and (h) K/Th. The locations of 

28 deposits/prospects listed in Table 1 were used to generate the P-A plots. 

     Various gamma amounts can be taken into account to run a FGO 
in MPM. Therefore, it is required to find out the most appropriate one 
in generating mineral favorability map. Examining several amounts of 
gamma revealed that the FGO with a value of 1 generates the most 
productive map (Fig. 9) with a higher efficiency index (EI).  The MPM 
EI was introduced as Eq. (1) [67], 

   MPM Efficiency Index (%) = w1 (100−predicted area %) + w2 (ore 
prediction rate %)        (1) 

where ∑ w𝑖
2
𝑖=1 = 1 and w𝑖 expresses the importance of each criterion. 

For unbiased weighting of each term defined in Eq. (1) that are the ore 
prediction rate and the predicted area, equal weight of 0.5 is usually 
assumed [67]. Higher values of this index present potential map with 
higher ore prediction rate and lower area as favorability zone. 

   Assuming different thresholds for each MPM, the MPM EI can be 
calculated. Figure 9 presents the EI curve for several values of gamma 
accompanied with the IO output. Highest efficiency value equal to 
74.2% was generated for gamma value equal to one at an MPM threshold 
of 0.45. Fuzzy operator with a gamma value of one is similar to a fuzzy 
algebraic sum operator (FAS). Figure 10 indicates the maximum and 
average of the EI for all knowledge-driven methods, depicting higher 
efficiency of the FAS operator compared to the other FGO and the IO 
outputs. Note that the FGO was implement for three main criteria of 
geology, geophysics and geochemistry (Fig.6).  
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Fig. 8 The index overlay output, (a) the C-A fractal curve, (b) the MPM, and (c) 

the P-A plot.  

 
Fig. 9 The curve of the efficiency index values for various MPMs generated by 
the fuzzy gamma operator and index overly techniques, when different MPM 

thresholds were taken into consideration. 

 
Fig. 10 The efficiency index values for various MPMs generated by the fuzzy 

gamma operator and index overly techniques, where the most efficient one was 
obtained for gamma 1. 

The optimum knowledge-driven mineral favorability map has been 
presented in Fig. 11b, while it has been reclassified into four populations 
on the basis of its fractal model in Fig. 11a. The P-A plot of the FAS map 
shown in Fig. 11c indicates an ore predication rate of 72% and occupied 
about 28% of area. Since this map is the most efficient Cu favorability 
map, it has been divided into four populations. Thus this number was 
fixed as the optimum number of clusters.  

5.2. Clustering mapping 

Assuming four clusters, clustering algorithms were run to map eight 
evidence layers into four clusters. Note that hexagonal topology with 
four neurons was used in running the SOM clustering. Figure 12 
presents clustering results respectively for the FCM, KM and SOM, in 
all of which the fourth cluster was in association with more favorable 
zone in association with porphyry-Cu mineralization. Table 5 presents 
the amounts of the ore prediction rate and the area of cluster number 
four for each clustering methodology, showing that efficiency index for 
the FCM, KM and SOM is respectively 66%, 70.5%, and 75%. KM has 
the best ore prediction rate but predict great area that decreases its 

efficiency index. FCM with the worst ore prediction rate and the middle 
amount of area has the least efficiency index. SOM predicts 61% of the 
known deposits/prospects whereas cluster number four occupies 11% of 
the study area that demonstrates its effectiveness to delimit the Cu-
forming zones. 

 

 

 
Fig. 11 The optimum hybrid MPM (fuzzy algebraic sum), (a) the C-A fractal 

curve, (b) the MPM, and (c) the prediction-area (P-A) plot.  

 
 Table 5. The amounts of the ore prediction rate and area for cluster number 
four, and knowledge-driven methods at the threshold values with the highest 

efficiency.  

Method Ore prediction rate (%) Area (%) Efficiency Index (%) 

FCM 54 22 66 
KM 68 27 70.5 

SOM 
IO 

FAS 

61 
67.9 
71.4 

11 
20.5 
23.1 

75 
73.7 
74.2 

6. Discussion 

To apply a hybrid-based MPM, eight evidence layers were designed 
in an exploratory geospatial data set. In other words, the feature vectors 
are eight dimensional in this case. After clustering, this dimension 
reduces to four clusters. This is the most important advantage of the 
clustering approach. Cluster number one for three methods concerns to 
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the background geological setting that has low potential for 
mineralization. This area is compatible with the Quaternary recent 
alluvium and ash tuff, lahar and breccia related mainly to Pliocene. The 
second cluster of the FCM and KM is more match with the K/Th layer. 
Colored melange related to Cretaceous and Eocene andesitic rocks are 
relevant to this class. This cluster in SOM map is similar to the fault layer 
to some extent. Cluster number three for three methods delineates 
intrusive bodies. This class locates in the UDMA zone. The fourth 
cluster of FCM and KM is matched to the fault layer, and in SOM is 
accordant with overlap of the intrusive bodies and faults. These areas 
have high potential for Cu mineralization, and can be powerful 
footprints in the Chahargonbad district. Among the above-mentioned 
methods, results of SOM is highly compatible with the FAS operator. 

 

 

 
Fig. 12 The hybrid-based clustering outputs, (a) FCM, (b) KM, and (c) SOM, 

where the optimum cluster number was estimated from the fractal analysis of the 
optimum gamma operator. 

7.  Conclusion 

In this study, the integration of knowledge-based and clustering 
algorithms was used as a hybrid method to prepare mineral favorability 
map for porphyry Cu exploration in the Kerman province of Iran. The 
Chahargonbad district situated in this region, was selected for this study. 

To implement the hybrid method, eight evidential layers were prepared 
as input criteria from processing geological, geochemical, geophysical 
and satellite imagery data. Among the knowledge-driven outputs, the 
fuzzy algebraic sum operator has the highest efficiency in mineral 
potential mapping. On the basis of the optimum clusters number 
obtained from the fuzzy sum operator, the clustering algorithms were 
applied to eight geospatial layers to reduce the dimensions of the feature 
vectors into four clusters. The promising areas that obtained from the 
SOM clustering are appropriately more consistent with the desired ore-
bearing targets, showing the superiority of the hybrid method over the 
conventional methods. 
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