[1] Bhatt, A., Helle, H.B. (2002). Committee neural networks for porosity and permeability prediction from well logs, Geophysical Prospecting. 50, pp. 645–660.
[2] Anderson, J.K. (1996). Limitations of seismic inversion for porosity and pore fluid: Lessons from chalk reservoir characterization exploration, Society of Exploration Geophysicists, SEG Annual Meeting, Denver, Colorado, pp. 309-312.
[3] Schultz, P. S., Ronen, S., Hattori, M., Corbett, C. (1994). Seismic-guided estimation of log properties (Part 1: A data-driven interpretation
methodology). The Leading Edge, 13, pp. 305-310.
[4] Lim, J.S. (2005). Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea, Journal of Petroleum Science and Engineering, 49, pp. 182-192.
[5] Singh, V., Painuly, P. K., Srivastava, A. K., Tiwary, D. N., Chandra, M. (2007). Neural networks and their applications in lithostratigraphic interpretation of seismic data for reservoir characterization, 19th World Petroleum Congress, Madrid, Spain. pp. 1244-1260.
[6] Walls, J.D., et al., (2000). Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes, and neural networks, Society of Exploration Geophysicists, SEG Annual Meeting, Calgary, Alberta, pp. 428-436.
[7] Calderon, J. E., Castagna, J. (2007). Porosity and lithologic estimation using rock physics and multi-attribute transforms in Balcon Field, Colombia, The Leading Edge, 26(2), pp. 142-150.
[8] Joel, D. W., et al., (2002). Interpreter's Corner---Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes and neural networks, The Leading Edge, 21, pp. 428-436.
[9] Zhengping, L., Jiaqi, L.. (1998). Seismic-controlled nonlinear extrapolation of well parameters using neural networks, Geophysics, 63(6), pp. 2035-2041.
[10] Tonn, R. (2002). Neural network seismic reservoir characterization in a heavy oil reservoir, The Leading Edge, 21(3), pp. 309-312.
[11] Banchs, R. E., Michelena, R. J. (2002). From 3D seismic atrributes to pseudo-well-log volumes using neural networks: Practical considerations, The Leading Edge, 21(10), pp. 996-1001.
[12] Rafael, E. B., Reinaldo, J. M. (2002). From 3D seismic atrributes to pseudo-well-log volumes using neural networks: Practical considerations, The Leading Edge, 21(10), pp.996-1001.
[13] Helle, H. B., Bhatt, A., Ursin, B. (2001). Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study ,Geophysical Prospecting, 49, pp. 431-444.
[14] Pramanik, A. G., et al. (2004). Estimation of effective porosity using geostatistics and multiattribute transforms: A case study, Geophysics, 69(2), pp. 352-372.
[15] Daniel, P. H., James, S. S., John, A. Q. (2001). Use of multiattribute transforms to predict log properties from seismic data, Geophysics, 66(1), pp. 220-236.
[16] Kevin, P. D., Curtis, A. L. (2004). Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction. Geophysics, 69(1), pp. 212-221.
[17] Leiphart, D. J., Hart, B. S. (2001). Comparison of linear regression and a probabilistic neural network to predict porosity from 3-D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico, Geophysics, 66(5), pp.1349-1358.
[18] Russell, B., Hampson, D., Schuelke, J., Quirein, J. (1997). Multiattribute Seismic Analysis, The Leading Edge, 16, pp. 1439-1443.
[19] Adekanle, A., Enikanselu, P. A. (2013). Porosity Prediction from Seismic Inversion Properties over ‘XLD’ Field, Niger Delta, American Journal of Scientific and Industrial Research, 4(1), pp. 31-35.
[20] Lei, L., Wei, X., Shifan, Z., Zhonghong, W. (2011). Reservoir property prediction using the dynamic radial basis function network, Society of Exploration Geophysicists ,SEG San Antonio 2011 Annual Meeting, pp. 1754-1758.
[21] Eftekharifar, M., Han, D. H. (2011). 3D Petrophysical modeling using complex seismic attributes and limited well log data, Society of Exploration Geophysicists,SEG San Antonio 2011 Annual Meeting, pp. 1887-1891.
[22] Hosseini, A., Ziaii, M., Kamkar Rouhani, A., Roshandel, A., Gholami, R., Hanachi, J. (2011). Artificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf, Iranian Journal of Earth Sciences, 3, pp.168-174.
[23] Basu, P., Verma, R. (2013). Multi attribute transform and Probabilistic neural network in effective porosity estimation-A case study from Nardipur Low area, Cambay Basin, India., 10th Biennial International Conference & Exposition, India, pp.131-139.
[24] Valenti, J. C. A. F., (2009). Porosity prediction from seismic data using multiattribute transformations, N Sand, Auger field, Gulf of Mexico, Ms.c Thesis, The Pennsylvania State University, The Graduate School.
[25] Joonaki, E., Ghanaatian, SH., Zargar, GH. (2013). An Intelligence Approach for Porosity and Permeability Prediction of Oil Reservoirs using Seismic Data, International Journal of Computer Applications, 80(8), pp. 19-26.
[26] Ziegler, P. A. (1990). Geological atlas of western and central Europe. Amsterdam: Elsevierfor Shell Internationale Petroleum Maatschappij, B.V.
[27] Van Boogaert, H. A. A., Kouwe, W. F. P. (1993). Nomenclature of the Tertiary of the Netherlands. RGD & NOGEPA. 50, The Netherlands, 2nd edition.
[28] Kay, C. (1993). The growth and gross morphology of Quaternary deltas in the southern North Sea. Ph.D. thesis, University of Edinborough.
[29] Steeghs, P., Overeem, I., Tigrek, S. (2000). Seismic volume attribute analysis of the Cenozoic succession in the L08 block (Southern North Sea): Global and Planetary Change, 27, pp. 245–262.
[30] Gregersen, U. (1997). Sequence stratigraphic analysis of Upper Cenozoic deposits in the North Sea based on conventional and 3-D seismic data and well-logs: Ph.D. thesis, University of Aarhus.
[31] Aminzadeh, F., & Groot, P.D. (2006). Neural networks and other soft computing techniques with applications in the oil industry: EAGE.
[32] Tetyukhina, D., Luthi, S. M., Van Vliet, L. J., Wapenaar, K. (2008). High-resolution reservoir characterization by 2-D model-driven seismic Bayesian inversion: an example from a Tertiary deltaic clinoform system in the North Sea, Society of Exploration Geophysicists, SEG Las Vegas 2008 Annual Meeting, pp. 1880-1884.
[33] Luthi, S.M. (2001). Geological well logs: Their use in reservoir modeling: Springer-Verlag.
[34] Brown, A.R. (1999). Interpretation of Three-Dimensional Seismic Data, 5th edition: AAPG Memoir 42, SEG Investigations in Geophysics 9, Tulsa, Oklahoma, 514 p.
[35] Jang. J.R.S. (1999). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst, Man, Cybernet, 23(3), pp. 665–85.
[36] Gustafson, D., Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix, In: Proceedings of the IEEE CDC, San Diego, CA, USA, pp. 761–766.
[37] Hoppner, F., Klawonn, F., Kruse, R., Runkler, T. (1999). Fuzzy Cluster Analysis, Wiley, New York. 361p.
[38] Gath, I., Geva, A. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Systems, Man, and Cybernetics, 11, pp. 773–781.
[39] Abonyi, J., Babuška, R., Szeifert, F. (2002). Modified Gath–Geva fuzzy clustering for identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics. Part B Cybern, 32, pp. 612–621.
[40] Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent And Fuzzy Systems, 2, pp. 267–278.
[41] Jin, S., Beydoun, W., Madariaga, R. (1993). A stable elastic inversion for marine data. Society of Exploration Geophysicists, SEG Annual Meeting, Washington, DC, pp. 665-668.
[42] Sheriff, R.E. (1991). Encyclopedic Dictionary of Applied Geophysics, 4th Ed (Geophysical References).
[43] Lay, D.C. (1996). Linear algebra and its applications, 2nd ed, Addison-Wesley.
[44] Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory (Revised Edition), Academic Press.
[45] Løseth, H., Wensaas. L., Arntsen. B., Gading, M. (2008). Gas chimneys and other hydrocarbon leakage anomalies interpreted on seismic data, Internationa geological congress Oslo(Norway) 2008, August 6-14.
[46] Chopra, S., Marfurt, K.J. (2007). “Seismic attributes for prospect identification and reservoir characterization” Society of Exploration Geophysicists, Tulsa, 456 p.
[47] Lin, C. T., Lee, C. S. G. (1991). Neural-network-based fuzzy logic control and decision system. IEEE Trans Comput, 40(12), pp. 1320–36.
[48] Zhou, Q., Purvis, M., Kasabov, N. (1997). A membership function selection method for fuzzy neural networks. In: Proc ICONIP, pp. 785–88.