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ABSTRACT 

This paper presents a comparative study between three versions of adaptive neuro-fuzzy inference 
system (ANFIS) algorithms and a pseudo-forward equation (PFE) to characterize the North Sea reservoir 
(F3 block) based on seismic data. According to the statistical studies, four attributes (energy, envelope, 
spectral decomposition and similarity) are known to be useful as fundamental attributes in porosity 
estimation. Different ANFIS models were constructed using three clustering methods of grid partitioning 
(GP), subtractive clustering method (SCM) and fuzzy c-means clustering (FCM). An experimental 
equation, called PFE and based on similarity attributes, was also proposed to estimate porosity values of 
the reservoir. When the validation set derived from training wells was used, the R-square coefficient 
between two variables (actual and predicted values) was obtained as 0.7935 and 0.7404 for the ANFIS 
algorithm and the PFE model, respectively. But when the testing set derived from testing wells was used, 
the same coefficients decreased to 0.252 and 0.5133 for the ANFIS algorithm and the PFE model, 
respectively. According to these results, and the geological characteristics observed in the F3 block, it 
seems that the ANFIS algorithms cannot estimate the porosity acceptably. By contrast, in the outputs of 
PFE, the ability to detect geological structures such as faults (gas chimney), folds (salt dome), and bright 
spots, alongside the porosity estimation of sandstone reservoirs, could help in determining the drilling 
target locations. Finally, this work proposes that the developed PFE could be a good technique for 
characterizing the reservoir of the F3 block. 

Keywords: ANFIS, clustering algorithms, experimental equation, porosity, seismic attributes. 

 

1. Introduction 
The spatial distribution of petro-physical 
parameters between wells in a hydrocarbon 
reservoir is an important issue in the 
petroleum industry. Hence, laboratory 

measurements of core plugs, the interpretation 
of geophysical well logs and the inversion of 
seismic attributes provide valuable estimations 
for the physical properties of any reservoir [1].  
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Several studies have shown that the 
inversion of seismic data into acoustic 
impedance (AI) is widely used in hydrocarbon 
exploration to estimate petro-physical 
properties. The acoustic impedance is 
commonly applied for porosity estimation, 
mostly based on an empirical relationship 
between acoustic impedance and porosity. 
However, the relationship differs from area to 
area because the compaction model varies 
both laterally and vertically. Thus, in many 
cases, porosity could not be estimated directly 
from the acoustic impedance using a single 
transform function in a large area [2].  

For this reason, Schults et al. [3] proposed 
the idea of using multiple seismic attributes to 
estimate log properties aside from well 
control. Therefore, various data integration 
techniques such as kriging or neural networks 
have been used to directly derive the petro-
physical properties from seismic attributes. 
For example, artificial neural networks (ANN) 
have been applied to predict core properties 
from well logs [4], and seismic properties 
have been employed to predict lithology [5-8], 
sonic logs and shale content [9], shale 
stringers in a heavy oil reservoir [10], 
spontaneous potential [11, 12], permeability 
[4, 13] and porosity [5, 7, 8, 14-18].  

Recently, Adekanle and Enikanselu 
attempted to improve spatial prediction of 
petro-physical properties through integration 
of petro-physical measurements and 3D 
seismic observations using multiple regression 
analysis [19]. Lei et al. proposed a dynamic 
radial basis function (D-RBF) network method 
to predict the reservoir’s properties from 
seismic attributes [20]. Eftekharifar et al. 
developed a method for 3D modelling and 
interpretation of log properties from complex 
seismic attributes using principal component 
analysis and local linear modelling [21]. 
Hosseini et al. used three types of neural 
network for inversion of seismic attributes and 
prediction of reservoir porosity [22]. Basu and 
Verma attempted to generate effective 
porosity volume using multi-attribute 
transform and probabilistic neural network 
[23]. Valenti compared methods of neural 
network and multi-linear regression analysis 
for predicting well-log porosity from seismic 
data [24]. Joonaki et al. presented an 

intelligent approach for the oil reservoir 
characterization using seismic elastic 
properties and a physical rock model [25].  

In addition to the applied techniques in the 
aforementioned researches, modern artificial 
intelligent methods such as neuro-fuzzy 
systems could be used for the prediction of 
petro-physical properties. These methods 
provide fast, reliable and low-cost solutions. 
Another advantage of these methods is that 
they can handle dynamic, non-linear and noisy 
data, especially when the underlying physical 
relations are very complex and not fully 
understood. Since artificial intelligence 
methods have not presented a specific 
mathematical equation to describe the 
relationship between attributes and petro-
physical properties, this paper implements a 
non-linear mathematical equation to describe 
the relationship between a seismic attribute 
(similarity) and the porosity value, and 
compares the results with three versions of 
ANFIS algorithms, which are developed based 
on different clustering algorithms. This model, 
which transforms similarity attributes of a 
sandstone reservoir to porosity values, is 
called the pseudo-forward equation (PFE) in 
this paper. The structure of PFE is 
implemented based on the data set of the gas 
reservoir of F3 block in the North Sea. This 
reservoir consists of sand and shale layers. 
Shale units are sandwiched between the sand 
layers. Therefore, the role of PFE in both rock 
types will be investigated. The initial 
parameters of PFE are unknown and should be 
derived from the data. This study will use 
algebra technique to solve the non-linear 
model, and finally the quality of the 
implemented model will be compared with the 
results of ANFIS algorithms. 

2. Geological setting  
The data set applied in this research is from the 
F3 block in the Dutch sector of the North Sea. 
Chalky sediments were deposited in the F3 
block at the end of the early Palaeocene, but a 
sudden increase in the supply of silica-clastics 
occurred because of the Laramide tectonic 
phase, which meant the deposition of chalky 
sediments was concluded [26]. During the 
Neogene, sedimentation rates significantly 
surpassed the subsidence rate and the North Sea 
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basin was defined by a period of rapid 
deposition and shallowing of the basin [27]. 
The most important geological occurrence in 
that period was the expansion of deltaic 
systems [26]. The delta systems in the North 
Sea region can be classified into two groups 
according to sources of the sediments. Until the 

early Pliocene, the main transport factor was 
the Baltic river system that deposited coarse 
fluvial sediments. Afterwards, German rivers 
became the main agent in the North Sea [28]. 
The Cenozoic sequence could be subdivided 
into two main packets separated by the mid-
Miocene unconformity (MMU) (Fig. 1). 

 

 

Fig. 1. Sketch of the Neogene fluvio-deltaic system in the southern North Sea (after [29]) 

The region between the Lower Tertiary and 
the mid-Miocene unconformities are known as 
the Lower Cenozoic sequence. The area from 
the mid-Miocene unconformity up to the sea 
bottom forms the Upper Cenozoic sequence. 
The reflections from the layers between the 
unconformity and the Plio-Pleistocene 
boundary in the Upper Cenozoic sequence are 
most interesting for this work. This region is a 
deltaic sequence subdivided into three sub-
sequences (Units 1, 2 and 3). Unit 1 belongs to 
the first phase of the delta’s evolution above 
the unconformity. Field evaluations show that 
their height varies between 4 and 10 ms two-
way travel time. Unit 2 belongs to the second 
phase of delta evolution and consists of 
sigmoid progradational reflection 
configurations. This unit shows a prograding 
clinoform pattern formed by superimposed 
sigmoid reflections. Unit 3 belongs to the final 
phase of delta evolution. The reflection 
configurations of the unit are characterized by 
divergence [30]. The deltaic package consists 
of sand and shale, with an overall high 
porosity (20–33 %). 

 

3. Data set 
A 3D seismic survey in F3 block covering an 
area of approximately 16×23 km

2
 has become 

publicly available, and is provided in a 
monograph by Aminzadeh and Groot [31]. 
The data volume consists of 646 in-lines and 
947 cross-lines. The line spacing is 25 m for 
both in-lines and cross-lines, and the sample 
rate is 1 ms. A standard seismic data 
processing sequence was applied to the data. 
The sonic and gamma ray logs data from four 
wells in the area are available. Density logs 
were reconstructed from the sonic logs using 
neural network techniques by dGB Earth 
Sciences. The density logs were also used to 
calculate porosity logs for all wells. A seismic 
line connecting the wells F03-04, F03-02, 
F02-01 and F06-01, with the main horizon 
correlations employed are shown in Figure 2. 
The wells F02-01 and F06-01 are situated in 
the south-western part of the F3 block, at the 
bottom set of the clinoform sequence. The 
well F03-02 is located to the north and in the 
top set of the sequence. The well F03-04 is 
situated in the eastern part of the block [32]. 
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Fig. 2. The seismic section driven from original seismic data (in-line 425), showing the location of wells and presenting 

the gamma ray logs in every well 

A basic rule for gamma ray log 
interpretation is that lower values correlate 
with sandy layers and higher values correlate 
with shaly layers [33]. According to this rule, 
the various shale and sand layers can be 
distinguished in Figure 2. Tetyukhina et al. 
[33] also interpreted the target zone by 
comparing the gamma ray log and P-wave 
velocity log. They applied a cross-plot of the 
gamma ray values against acoustic impedance 
values within the target zone to describe the 
target zone using the correlation between the 
two logs (Fig. 3b). 

As shown in Figure 3a, the seismic cross-
section is displayed in in-line 441, and well 
F03-4 whose location is illustrated in Figure 
3a was selected to interpret various layers in 
the target zone using cross-plot analysis. 
‘Truncation 1’ and ‘MFS4’ (white dashed 
lines) represent the position of the target zone 
interval in the seismic data. The cross-plot of 
the gamma ray values against acoustic 
impedance values, computed from the velocity 
and density logs, is presented in Figure 3b. 
The colour scale is assigned to the points as a 
function of depth to describe the correlation 
between the two logs. According to the results 
of Figures 2 and 3, two types of sediments can 
be distinguished in the target zone. Shale-rich 
sediments (600–750 m) with generally higher 
gamma ray values (>70 API) are depicted as 

blue points, and sand-rich sediments (750–850 
m) with generally low gamma ray values (<70 
API) are shown as red points. 

3.1. Pre-processing 
In this research, the main objective is to 
correctly characterize the gas-bearing 
reservoir of F3 block in term of porosity using 
analysis of the attributes of seismic data. 
Seismic attributes could expose information 
which is not readily apparent in the raw 
seismic data. There are over 100 attributes 
which are applicable in some geophysical 
interpretation software packages [34], many of 
which result from slightly differing procedures 
to distinguish specific properties, such as 
amplitude or phase. An appropriate correlation 
between seismic attributes and porosity is seen 
often enough to convince us in the present 
work that the correlation is meaningful and 
that seismic attribute could be applied as an 
agent for porosity in reservoir 
characterization. Statistical studies of more 
than 15 attributes, computed by Opendtect 
software, show acceptable correlations 
between some seismic attributes and porosity, 
which is derived from the density logs of 
available wells. A detailed list of the attributes 
used and their statistical parameters, besides 
the correlation coefficients of the extracted 
attributes, are presented in Table 1. 

http://petrowiki.org/Seismic_attributes_for_reservoir_studies#cite_note-r8-7
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Fig. 3. a) The seismic section (in-line 441) used for the cross-plot analysis [32]; b) A cross-plot of the gamma ray values 

against acoustic impedances values within the target zone  [32] 

Table 1. List of attributes used and their correlation coefficients with porosity values 

Descriptive Statistics   

Studied Attributes 

Number 

of 
Points 

Minimum Maximum Average 
Std. 

Deviation 
Correlation 
Coefficient 

*Sig. 

Porosity 927 0.221 0.344 0.286638 0.0236882 1  
Energy 927 425250 16411000 4163775 3456700.9 -0.23 0.000 

Envelope 927 139.5344 8602.5 2411.765 1748.5479 -0.26 0.000 

Instantaneous Phase 927 -3.3283 3.1552 -0.191617 1.7112253 0.017 0.457 

Instantaneous Frequency 927 -178.51 689.4833 209.9355 80.7153086 -0.101 0.000 

Hilbert Transformation 927 -7365.5 6536.3 -36.39097 1992.0581 0.066 0.004 
Amplitude 1st Derivative 927 -664760 548200 -3885.769 198827.97 -0.036 0.115 

Amplitude 2nd Derivative 927 -111040000 126270000 -4254.58 34531237 -0.023 0.305 

Cosine Phase 927 -1.0178 1.0477 -0.056109 0.6814381 -0.107 0.000 

Envelope Weighted Phase 927 -3.0598 2.4849 -0.101663 1.0937449 -0.034 0.137 
Envelope Weighted Frequency 927 -14.5334 305.4846 203.4539 51.1291469 -0.157 0.000 

Phase Acceleration 927 -73638 64199 49.61784 12914.86 0.064 0.005 

Thin Bed Indicator 927 -363.73 415.4329 6.48161 48.7964219 -0.002 0.918 

Bandwidth 927 -0.5155 108.298 12.81416 11.9160097 -0.159 0.000 

Q Factor 927 -5232.1 5676 -41.45138 398.0633953 -0.022 0.333 
Instantaneous Rotate Phase 927 -6536.3 7365.5 36.39097 1992.0581 -0.066 0.004 

Spectral Decomposition 927 304.8516 13142 4835.486 2861.6049 -0.307 0.000 

Similarity 927 0.6861 0.9488 0.871362 0.0608897 -0.45 0.000 

*The sig. is the statistical significance of the result. The result is significant if it is smaller than 5 %. 
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According to Table 1, the highlighted 
attributes are considered to be optimal ones to 
predict porosity as the output in linearity and 
non-linearity mode. In practice it is not too 
common to have correlation greater than 0.5-
0.6 between seismic attributes and well log 
data, so this work is satisfied with using F3 
data to find linear or non-linear relationships 
between two sets of input and output data. In 
this research, the candidate attributes such as 
energy, envelope, spectral decomposition and 
similarity are used to predict the spatial 
distribution of porosity in the North Sea 
reservoir using two different techniques. The 
first is an ANFIS algorithm which is 
implemented in three versions based on 
different clustering algorithms, and the second 
is an experimental model which is constructed 
using algebraic technique. Since the similarity 
is a fundamental attribute which shows more 
correlation than other attributes, the proposed 
model is introduced as an experimental 
equation between similarity attribute and 
porosity value to develop with the data set of 
the North Sea case; therefore it is known as a 
case-dependent model. 

3.2. Adaptive neuro-fuzzy inference system 
(ANFIS) 

ANFIS is a network structure consisting of a 
number of nodes connected through directional 
links. Each node is characterized by a node 
function with fixed or adjustable parameters. 
Once the fuzzy inference system is initialized, 
neural network algorithms can be used to 
determine the unknown parameters (premise and 
consequent parameters of the rules) and 
minimize the error measure, as conventionally 
defined for each variable of the system. Due to 
this optimization procedure, the system is 
described as adaptive. In fact, ANFIS is a fuzzy 
inference system; therefore it is necessary to 
initialize the FIS structure [35]. There are some 
methods to initialize the ANFIS structure before 
any parameter-tuning. For a given data set, 
different ANFIS models could be constructed 
using different identification methods. 
Clustering algorithms essentially deal with the 
task of partitioning a set of patterns into a 
number of homogeneous classes (clusters) with 
respect to a suitable similarity measurement. 
Clustering methods play an important role in the 

areas of pattern recognition and classification. 
Several clustering algorithms are used to identify 
the antecedent parameters. The popular fuzzy c-
means (FCM) and the Gustafson–Kessel (GK) 
clustering algorithms [36], the simplified 
Gustafson–Kessel (SGK) clustering algorithm 
[37], the Gath–Geva (GG) clustering algorithm 
[38], the simplified Gath–Geva (SGG) clustering 
algorithm [37], the modified Gath–Geva (MGG) 
clustering algorithm [39] and the subtractive 
clustering (SC) algorithm [40] have been used. 
Grid partitioning (GP), SCM and FCM are used 
in this paper to identify the antecedent 
membership functions. (Refer to Appendix A for 
further details on ANFIS structure.) 

3.3. Implementation of ANFIS algorithms 
In order to implement ANFIS algorithms and 
train them with sufficient generality, the 
available data are divided into three subsets. 
The first subset is the training set, which is 
used to train the algorithms. The second subset 
is the validation set derived from training 
wells (F02-1, F06-1, F03-2). This set of data, 
which is not applied during the training, is 
used to validate the trained algorithms. The 
third subset is the testing set derived from 
testing well (F03-4); this well, which is not 
used during the training, is applied to obtain 
the overall accuracy of the algorithms and 
evaluate the generality of various ANFIS 
structures. ANFIS programming in MATLAB 
R2008a software is used here. To develop 
ANFIS(GP), ANFIS(SCM) and 
ANFIS(FCM), Genfis1, Genfis2 and Genfis3 
commands are used, respectively. These 
commands generate initial structures of the 
Sugeno fuzzy inference system using grid 
partition, subtractive clustering and fuzzy c-
means clustering algorithms, respectively. 
Figure 4 shows the fuzzy rule architecture of 
various developed ANFIS algorithms and 
Table 2 shows the details of ANFIS 
algorithms used in this study. 

The ANFIS algorithms were trained with 
1427 data for the training phase and the 
changes of the final (after training) Gaussian-
shaped membership functions of the input 
parameters are shown in Figure 4. The training 
data set was taken from sand-rich sediments of 
the three wells (F02-1, F06-1, F03-2) with 
gamma ray values less than 70 API. 
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Table 2. The specification of ANFIS models developed by MATLAB 

ANFIS Details ANFIS(GP) ANFIS(SCM) ANFIS(FCM) 

Number of nodes: 55 117 67 

Number of linear parameters: 80 55 30 

Number of nonlinear parameters: 16 88 48 

Total number of parameters: 96 143 78 

Number of training data pairs: 1427 1427 1427 

Number of fuzzy rules: 16 11 6 

 

Fig. 4. Architecture of ANFIS , based on GP, SCM and FCM 

 
Fig. 5. Comparison of the measured and the predicted porosity of validation set: A) grid partition; B) subtractive 

clustering; C) fuzzy c-means clustering 
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Fig. 6. Comparison of the measured and the predicted porosity of testing set: A) grid partition; B) subtractive 

clustering; C) fuzzy c-means clustering 

For the learning process, the input vectors 
(energy, envelope, spectral decomposition and 
similarity) and corresponding target vectors 
(porosity) are used to train the ANFIS 
algorithms.  

The validation and testing data set, which 
does not include any data from the training 
data set, is used to evaluate the generalization 
ability of ANFIS algorithms. Figures 5 and 6 
illustrate the results of the three ANFIS 
algorithms based on the second and third sets. 
The comparison shows a slight superiority of 
ANFIS (SCM) over ANFIS(GP and FCM) in 
Figure 5. The R-square coefficient, which 
measures the strength of the linear relationship 
between the two variables (actual and 
predicted values), is R=0.7935. According to 
these results, it seems that the ANFIS 
algorithms could be a good method with 
which to estimate porosity distribution, while 
when the testing set is applied the same value 
decreased to 0.252. It is evident from these 
results that the generalization ability of ANFIS 
algorithms is not acceptable, and the predicted 
results do not match well with the 
experimental values. 

3.4. Pseudo-forward equation (PFE) 
The development of a mathematical model 
that is able to predict the petro-physical 
properties should be performed based on the 
physical concepts. These equations (the so-
called forward model) are often formulated 
using seismic fundamental factors of the 
Earth, such as wave velocity, density, etc. 
Unlike the conventional procedure, this work 
intends to extract an empirical model that is 
weakly supported by experimental data. 
Although it is possible to introduce a model 
from seismic data, the terms in the equation 
are empirical and any functional connection to 
physical concept is not entirely justified. 
Because of the empirical nature of the 
proposed model, the developed model is 
therefore called a pseudo-forward equation 
(PFE) in this work. As described before, some 
seismic attributes were chosen for the 
prediction of spatial distribution of porosity. 
This paper has designed various mathematical 
structures based on the aforementioned 
attributes, but they have shown different 
degrees of accuracy. Implicitly, it has been 
assumed that multi-attribute functions are 
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more valid than single-attribute ones over the 
target zone. Improvements have focused on 
accuracy enhancement, shorter equations and 
improved representation of the sand and shale 
regions. Finally, in all these situations, various 
mixture models were developed that exhibit 
varied behaviour in contrast to sand and shale 
layers. The ultimate empirical function, which 
is a single-attribute equation based on the 
similarity attribute, is expressed as:  

(1)  s ln(s)
ln(s)

c
Y a b    

where Y  denotes porosity and s  is a similarity 
attribute. The coefficients of the equation (a, b 
and c) depend on the experimental data, and our 
investigations indicate that a limited set of data 
(sediments with gamma ray lower than 70 API) 
in the target zone could be used to adjust the 
coefficients. The deviations of porosity values 
calculated using this equation are much lower 
than those from the equation developed by 
sediments with gamma ray higher than 70 API.  

The PFE is a non-linear function, and by 

substituting similarity into s  porosity 
distribution could be estimated in the reservoir 
if the optimal constants (a, b, c) are in the 
pseudo-forward equation. Assuming that the 
PFE provides estimates of porosity values for 
different similarity attributes, at a particular 
depth under consideration, it could be applied 

to express a linear system of n  linear 
equations with three unknowns as: 

(2) 

1 1 1 1

2 2 2 2

s ln(s ) 1 / ln(s )1

s ln(s ) 1 / ln(s )1

1 s ln(s ) 1 / ln(s )N N N N

d
a

d
b

c
d

   
    
    
    
      

   

 

The above equation is also a matrix equation 
which could be written symbolically as: 

(3) d = Gm  

where G is the matrix of known coefficients, 
m is the unknown parameter vector containing 
(a, b, c), and d is the input data vector 
(similarity attribute from the seismic data at 
that particular depth). The matrix G is related 
to the geometry of the problem and not the 
data itself. Having more data than unknowns 

when 3n  , the system of Equations 2 has no 

exact solution. Jin et al. [41] showed that 
singular value decomposition (SVD) could be 
effectively employed for stabilization of 
inverse problems. The main advantage of SVD 
is that it provides a precise way of analysing a 
matrix, and yields a stable but approximate 
inverse. SVD is widely used in geophysical 
inversions, and in this work the SVD 
technique has been applied in the inverse 
problem. 

3.5. SVD solution of PFE 
Singular value decomposition (SVD) is a 
common and precise way of solving linear 
least squares problems [42]. For a general 

matrix G of order n m , which is a map from 
the model space to the data space, there is 
always a matrix decomposition called the 
singular value decomposition (SVD) of matrix 
G. Singular value decomposition allows the 
matrix G to be expressed as the product of 
three matrices [43]: 

(4) TG UΛV  

where Um m
 is the matrix of eigenvectors of 

GGT that span the data space, and Vn n
 is the 

matrix of eigenvectors of the G GT  that span 
the model space. The singular values of the 
matrix G are the positive square roots of the 

eigenvalues of the matrixG GT . 
m n  is a 

matrix with the singular values of the matrix G 
in its main diagonal elements in a decreasing 
order. Menke [44] showed that the SVD of 
matrix G becomes 

(5) T T

P P PG UΛV U Λ V   

where the matrices UP and VP consist of the 

first p  columns of U and V, related to non-

zero singular values. p p  is a diagonal 

matrix with the non-zero singular values of the 
matrix G in diagonal elements. In the 
inversion calculations of the PFE equation 5 is 
applied, which is a reduced form of SVD. By 
the definition of the generalized inverse of a 

matrix, the estimated solution vector 
estm  will 

be obtained as: 

(6) 1Vest T

p p pm U d   
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To get better model parameters for PFE, in 
this work we selected the sand data set (gamma 
ray < 70 API, N=268; P=3), consequently, the 

solution parameter vector estm  is obtained from 
equation 6. The only potential difficulty in 
using SVD is when inverting a matrix that 
possesses some very small singular values 

(
1 0.3020 ). If a singular value j  is small, 

the inverse of it becomes large and is 
dominated by numerical round-off error, which 
is undesirable. Menke [43] stated that when 
small singular values are excluded, the solution 
is generally close to the natural solution and 
possesses better variance. In this case, 

1 0.3020  which is small and near zero; 

therefore, the option is to arbitrarily set 
1 0  

so that p  is reduced from 3 to 2, and 

(7) 2

7.2697 0

0 181.1612
Λ

 
  
 

 

(8) 2

0.9723 0.0815

0.2191 0.0072

0.0811 0.9966

V

  
 
 
  

 

(9) 2

0.0904 0.0245

0.0877 0.0257

0.0238 0.0560

U

 
 
 
 
 
 

 

According to the abovementioned 
equations, the optimized solution of PFE 
inverse problem could be written as: 

(10) 1

2 2 2

est Tm V U d   

and 

(11) 

 

0.9723 0.0815
0.1376 0 0.0904 0.0877 0.0238

0.2191 0.0072
0 0.0055 0.0245 0.0257 0.0560

0.0811 0.9966

0.3003
0.3028

0.3008
0.0680

0.0019
0.3070

est
m

 





 

 
   
       

  

 
  
  
  
   

 

 

Based on the obtained solution, the final 
PFE model based on the sand data set of F3 
block is implemented as: 

(12) 
0.0019

0.3028 0.0680 S ln(S)
ln(S)

Porosity     

Equation 12 is introduced as a data-driven 
mathematical model that is able to estimate the 
porosity distribution of a sandstone reservoir. 
To gain a better sense of the prediction power 
and generality of the optimized PFE, 
validation and testing sets were utilized that 
were similar to the ones employed in the 
ANFIS models. 

Figure 7 shows a scatter diagram of the 
observed values vs. the predicted outputs of 
the PFE model. From a comparison of the 
scatter plot of PFE and ANFIS models, the 
first thing to notice is that both developed 
models perform best with acceptable precision 
in the regions near to the training wells. As the 
testing data are exactly the same, this indicates 

 

 
Fig. 7. Comparison of the measured and the predicted porosity by PFE: A) validation set; B) testing set 
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that the developed experimental model could 
better predict the porosity values of the 
regions far away from the training wells than 
the ANFIS algorithms. Therefore, there is a 
performance gap between training and testing 
locations that is considerable in ANFIS 
algorithms, while the proposed experimental 
model could reduce this gap.  

3.6. Reservoir characterization using 

ANFIS and PFE 
The interpretation of the target zone is 
fundamentally driven by the illustration of the 
spatial distribution of porosity predicted by the 
developed models. Figures 8 and 9 show the 
outputs of ANFIS algorithms (in-lines 244 and 
442) and Figures 10a and 11 present the 
results of the PFE model in the same sections. 
In order to better differentiate the differences 
between the two models, a seismic line of 
porosity cube provided by dGB Earth Sciences 
Company is presented in Figure 10b, which is 
obtained via acoustic impedance inversion. In 

Figure 10b it is evident that Unit 2 has more 
porosity value than other units (1 and 3) and 
does not exhibit any significant variations, 
except close to the red elliptical polygon 
associated with a vertical discontinuity, which 
is known as a gas chimney anomaly. The 
presence of gas chimneys has been interpreted 
as signifying hydrocarbon leakage pathways, 
and the mapping of such chimneys by neural 
network techniques has been established as an 
exploration tool. Wells drilled inside gas 
chimneys typically have higher pore fluid 
pressure, higher mud gas readings, higher mud 
gas wetness, more hydrocarbon shows, lower 
velocities, and higher temperatures than wells 
drilled outside gas chimneys [45]. Gas 
chimney and fault volumes extracted from 3D 
seismic data are rapidly becoming valuable 
tools for exploration and field development. In 
Figure 10a, the PFE model can detect this 
anomaly which marks the transition between 
the salt dome located in Unit 1 (Zechstein) and 
the near-surface gas pockets.  

 

 
Fig. 8. The seismic sections of porosity (line 244) estimated by ANFIS: A) grid partition; B) subtractive clustering; C) 

fuzzy c-means clustering 
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Fig. 9. The seismic sections of porosity (line 442) estimated by ANFIS: A) grid partition; B) subtractive clustering; C) 

fuzzy c-means clustering 

 

 

Fig. 10. A) The seismic section of porosity (in-line 244) estimated by PFE; B) the seismic section of porosity (in-line 

244) provided by dGB Earth Sciences Company 
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As indicated in Figure 11, the Zechstein 
salt dome is captured by the PFE model. It is 
clear that the feature of fault detection is 
driven by the similarity attribute. As in other 
researches, the similarity attribute map is 
applied to enhance the fault structures; 
furthermore, clear salt edges, and various 
seismic anomalies such as chimneys, faults, 
fractures, salt and sand bodies could be 
highlighted using the PFE technique that 
analyses data with combinations of similarity 
attributes. In addition to the patterns already 
defined in the PFE map, another anomaly 
could be found at about 530 ms in the map. In 
fact, F3 block contains a bright spot at about 
530 ms possibly due to the presence of a gas 
packet. Chopra and Marfurt [46] demonstrate 
that reflections from gas-charged reservoir 
rocks showed much larger amplitudes than did 
reflections from adjacent oil or water saturated 
zones, and are often known as bright spots. A 
bright spot is obviously detectable in the 
instantaneous amplitude attribute, which is 
indicated with a yellow arrow in Figure 12. 
The instantaneous amplitude attribute of F3 
block is illustrated in Figure 12. Additionally, 
in the output of the PFE model (Fig. 10a), the 

bright spot is identified with a black arrow. On 
the other hand, when the outputs of ANFIS 
algorithms are considered (Figs. 8 and 9), it 
seems that there is a large gap between these 
results and the result reported by dGB Earth 
Science Company. A possible cause of 
inaccuracy in the ANFIS algorithms is the 
absence of enough available well data to 
provide sufficient generality in the trained 
models in the learning process. However, the 
inaccuracy could be seen in the PFE model 
with less intensity. Because the PFE model 
was developed only with the data set of sand 
sediments, it might be allowed to tune more 
appropriately to the sand units than the shale 
layers. In Figure 10a, this fact could be 
observed at the ‘A’ spot where there are 
deposits of shaly sediments. But, on the other 
hand, the opposite appears to be true at the ‘B’ 
spot where the model could estimate porosity 
distribution correctly. However, despite the 
few inaccuracies in the PFE results, the 
observations suggest that the PFE model has 
performed well within the gas-bearing sand 
reservoir of F3 block, and that ANFIS 
algorithms require a higher number of wells to 
develop with greater accuracy.  

 

 

Fig. 11. The seismic section of porosity (in-line 442) estimated by PFE 
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Fig. 12. The instantaneous amplitude attribute map (in-line 244): high amplitude in 530 ms is an indicator of the 

presence of charged gas.  

Conclusion 
1. This work developed a mathematical model 
and ANFIS algorithms to characterize the gas-
bearing sand reservoir of F3 block in term of 
porosity. 

2. The PFE model, which uses the 
similarity attribute for predicting the porosity 
values, has three unknown constants which are 
obtained using SVD method. 

3. This article was not able to correlate the 
PFE on the shale data set; therefore this 
research concentrated on the behaviour of the 
PFE on the sand data set (sediments with 
gamma ray values > 70 API). 

4. The point that is significant in the 
seismic sections obtained by PFE is its 
capability in enhancing the gas chimneys. The 
reason for this behaviour of PFE is that its 
intrinsic properties originate from the nature 
of similarity. The similarity attribute enhances 
the fault structures and salt edges. 

5. Unit 2, which is known as one of the 
main gas reservoirs of the F3 block, shows 
higher porosity compared to the Units 1 and 3 
using PFE. 

6. According to the observations in the 
outputs of PFE, the ability to detect the 
geological structures such as faults (gas 
chimney), folds (salt dome) and bright spot, 
besides the porosity estimation of sandstone 

reservoirs, could be used for a guideline in 
selecting the drilling points.  

7. It should be stated that the implemented 
ANFIS algorithms could not estimate porosity 
of the North Sea reservoir acceptably, and 
did not capture the geological features 
observed in the well located in F3 block. 
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Appendix A 
A fuzzy inference system could model the 
qualitative aspects of human knowledge and 
reasoning processes without employing 
precise quantitative analyses. Neural networks 
(NN) are information-processing programs 
inspired by mammalian brain processes. NN 
are composed of a number of interconnected 
processing elements analogous to neurons. 
The training algorithm inputs to the NN a set 

of input data and checks the NN output for the 
desired result. Combining neural networks 
with fuzzy logic has been shown to reasonably 
emulate the human process of expert decision-
making. In traditional NN, only weight values 
change during learning, so that the learning 
ability of neural networks is combined with 
the inference mechanism of fuzzy logic for a 
neuro-fuzzy decision-making system [47].  

 

 
Fig. 13. a) The first-order of TSK fuzzy model; b) corresponding ANFIS architecture (after [35]) 

Thus, an adaptive network is presented in 
Figure 13a which is functionally equivalent to 
the fuzzy inference system in Figure 13b. In 
the experiment, a neural fuzzy model is used 
[48] which consists of five layers: 

Layer 1: Each node i in this layer generates 
a membership grade of a linguistic label. For 
instance, the node function of the ith node 
might be: 
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where x is the input to node i, and 
iA  is the 

linguistic label (small, large, etc.) associated 

with this node; and  , ,i i iV b  is the 

parameter set that changes the shapes of the 
membership function. Parameters in this layer 
are referred to as the “premise parameters”. 

Layer 2: Each node in this layer calculates 
the “firing strength” of each rule via 
multiplication: 

(2) 2 ( ). ( ) 1,2i i Ai BiQ W x y i     

Layer 3: The ith node of this layer 
calculates the ratio of the ith rule’s firing 
strength to the sum of all rules’ firing 
strengths: 
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For convenience, outputs of this layer will 
be called “normalized firing” strengths. 

Layer 4: Every node i in this layer is a node 
function: 

(4) 4 ( )i i i i i i iQ W f W p x q y r     

where iW  is the output of layer 3. Parameters 

in this layer will be referred to as “consequent 
parameters”. 

Layer 5: The single node in this layer is a 
circle node labelled R that computes the 
“overall output” as the summation of all 
incoming signals, i.e., 
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