[1] Ellefmo, S. L. and Eidsvik, J. (2009). Local and spatial joint frequency uncertainty and its application to rock mass characterisation. Rock mechanics and rock engineering, 42.4: 667-688.
[2] Ruffolo, R. M. and Shakoor, A. (2009). Variability of unconfined compressive strength in relation to number of test samples. Engineering Geology, 108.1: 16-23.
[3] Ozbek, A., Unsal, M. and Dikec A. (2013). Estimating uniaxial compressive strength of rocks using genetic expression programming. Journal of Rock Mechanics and Geotechnical Engineering.
[4] Yilmaz, I. (2009). A new testing method for indirect determination of the unconfined compressive strength of rocks. International Journal of Rock Mechanics and Mining Sciences, 46.8: 1349-1357.
[5] Manouchehrian, A., Sharifzadeh, M. and Hamidzadeh Moghadam, R. (2012). Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics. International Journal of
Mining Science and Technology, 22.2: 229-236.
[6] Coates, D.F., and Parsons, R.C. (1966). Experimental criteria for classification of rock substances. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 3. No. 3. Pergamon.
[7] Mark, C., McWilliams, L., Pappas, D., and Rusnak, J. (2004). Spatial trends in rock strength: can they be determined from coreholes. Proceedings of the 23rd International Conference on Ground Control in Mining. Morgantown, WV: West Virginia University, pp. 177B182.
[8] Ozturk, C.A., and Simdi, E. (2014). Geostatistical investigation of geotechnical and constructional properties in Kadikoy–Kartal subway, Turkey. Tunnelling and Underground Space Technology 41: 35-45.
[9] Hoerger, S.F. and Young, D.S. (1987). Predicting local rock mass behavior using geostatistics. The 28th US Symposium on Rock Mechanics (USRMS).
[10] Stavropoulou, M., Exadaktylos, G. and Saratsis, G. (2007). A combined three-dimensional geological-geostatistical-numerical model of underground excavations in rock. Rock mechanics and rock engineering 40.3: 213-243.
[11] Oh, S. (2013). Geostatistical integration of seismic velocity and resistivity data for probabilistic evaluation of rock quality.
Environmental Earth Sciences: 69:939–945.
[12] Öztürk, C. A. and Nasuf, E. (2002). Geostatistical assessment of rock zones for tunneling. Tunnelling and underground space technology, 17.3: 275-285.
[13] Ayalew, L., Reik, G. and Busch, W. (2002). Characterizing weathered rock masses— a geostatistical approach. International Journal of Rock Mechanics and Mining Sciences 39.1: 105-114.
[14] Gringarten, E. and Deutsch, V.C. (2001). Teacher's aide variogram interpretation and modeling. Mathematical Geology 33.4: 507-534.
[15] Journel, A.G. (1988). Fundamentals of geostatistics in five lessons. Stanford Center for Reservoir Forecasting, Applied Earth Sciences Department.
[16] Rajashekhar, M.R., Ellingwood, B.R. (1993). A new look at the response surface approach for reliability analysis. Structural safety, 12.3: 205-220.
[17] Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989). Design and analysis of computer experiments. Statistical science, 4.4: 409-423.
[18] Hashemi, M. (2008). Rock mechanic’s reports, water supply project of the Central Plateau, Zayandehab Consulting, printed in Farsi.
[19] Armstrong, M. (1998). Basic Linear Geostatistics. Springer Verlag, Berlin, 155 pp.