Geomechanical characterization of an anisotropic fractured rock mass using fuzzy system and Monte Carlo simulation

Document Type : Research Paper

Author

Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

10.22059/ijmge.2025.393814.595242

Abstract

Characterizing fractured rock masses is a major challenge in geotechnical and mining engineering because of uncertainties in both intact rock properties and fracture behavior. These uncertainties reduce confidence in the estimation of geomechanical parameters, which are critical for reliable design. Deterministic approaches often rely on mean values and therefore underestimate or overestimate variability, leading to unsafe or overly conservative outcomes. This study proposes an integrated framework that combines fuzzy logic with Monte Carlo simulation to quantify uncertainty in fractured rock mass properties. Seven key parameters—Poisson’s ratio, Young’s modulus, uniaxial compressive strength (UCS), cohesion, friction angle, and the Hoek–Brown constants m and s—were modeled as fuzzy variables using triangular membership functions. Degrees of membership (DoM) from 0.2 to 0.8 were applied to define parameter ranges, and Monte Carlo simulation with 25000 iterations was conducted for each DoM level to derive 95% confidence intervals. Results show that confidence intervals consistently narrow as DoM increases, indicating reduced uncertainty. Two quantitative indices—confidence interval width (CIW) and relative uncertainty (RU)—were introduced, confirming that higher DoM levels correspond to lower uncertainty. A sensitivity analysis further demonstrated that while normal distributions yield narrower intervals due to small standard deviations, log-normal and uniform distributions capture broader variability. Additional tests with intermediate DoM values confirmed the stability and robustness of the framework. Overall, the fuzzy–Monte Carlo approach offers a systematic and practical tool for uncertainty quantification in rock engineering. By incorporating variability into parameter estimation, the method enhances the reliability of numerical modeling and provides stronger support for reliability-based geotechnical design.

Keywords

Main Subjects


[1]. Hudson, J.A. and Harrison, J.P. (2000). Engineering rock mechanics: an introduction to the principles. Elsevier.
[2]. Noorian-Bidgoli, M. (2014). Strength and deformability of fractured rocks. Doctoral dissertation, KTH Royal Institute of Technology, Sweden.
[3]. Noorian-Bidgoli, M. and Jing, L. (2014). Anisotropy of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 156-164. doi:10.1016/j.jrmge.2014.01.009
[4]. Langford, J.C. and Diederichs, M.S. (2015). Quantifying uncertainty in Hoek–Brown intact strength envelopes. International Journal of Rock Mechanics and Mining Sciences, 74, 91-102. doi:10.1016/j.ijrmms.2014.12.008
[5]. Barton, N. and Quadros, E. (2015). Anisotropy is everywhere, to see, to measure, and to model. Rock Mechanics and Rock Engineering, 48(4), 1323-1339. doi:10.1007/s00603-014-0632-7
[6]. Noorian-Bidgoli, M., Zhao, Z. and Jing, L. (2013). Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5(6), 419-430. doi:10.1016/j.jrmge.2013.09.002
[7]. Pain, A., Kanungo, D.P. and Sarkar, S. (2014). Rock slope stability assessment using finite element based modelling-examples from the Indian Himalayas. Geomechanics and Geoengineering, 9 (3), 215-230. doi:10.1080/17486025.2014.883465
[8]. Tiwari, G. and Latha, G.M. (2016). Design of rock slope reinforcement: an Himalayan case study. Rock Mechanics and Rock Engineering, 49, 2075-2097. doi:10.1007/s00603-016-0913-4
[9]. Saeidi, O., Torabi, S.R., Ataei, M. and Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics and Mining Sciences, 68, 55-65. doi:10.1016/j.ijrmms.2014.02.007
[10]. Vargas, J.P., Koppe, J.C., Pérez, S. and Hurtado, J.P. (2017). The best estimation for shift duration in tunnel excavation using stochastic simulation. International Journal of Engineering and Technical Research, 7(4), 265037.
[11]. Kulatilake, P.H., Um, J.G., Wang, M., Escandon, R.F. and Narvaiz, J. (2003). Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East Tunnel, California, USA. Engineering geology, 70(1-2), 131-155. doi:10.1016/S0013-7952(03)00087-5
[12]. Meyer, T. and Einstein, H.H. (2002). Geologic stochastic modeling and connectivity assessment of fracture systems in the Boston area. Rock mechanics and rock engineering, 35(1), 23-44. doi:10.1007/s006030200007
[13]. Kim, K. and Gao, H. (1995). Probabilistic approaches to estimating variation in the mechanical properties of rock masses. International journal of rock mechanics and mining sciences & geomechanics abstracts, 32(2), 111-120. doi:10.1016/0148-9062(94)00032-X
[14]. Park, H. (1999). Risk analysis of rock slope stability and stochastic properties of discontinuity parameters in western North Carolina. Doctoral dissertation, Purdue University, United States.
[15]. Park, H.J., West, T.R. and Woo, I. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4), 230-250. doi:10.1016/j.enggeo.2005.02.001
[16]. Sari, M. (2009). The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass. International Journal of Rock Mechanics and Mining Sciences, 46(3), 613-626. doi:10.1016/j.ijrmms.2008.07.007
[17]. Mazraehli, M. and Zare, S. (2020). An application of uncertainty analysis to rock mass properties characterization at porphyry copper mines. Bulletin of Engineering Geology and the Environment, 79(7), 3721-3739. doi:10.1007/s10064-020-01758-2
[18]. Vargas, J.P., Koppe, J.C. and Pérez, S. (2014). Monte Carlo simulation as a tool for tunneling planning. Tunnelling and underground space technology, 40, 203-209. doi:10.1016/j.tust.2013.10.011
[19]. Sari, M. (2015). Incorporating variability and/or uncertainty of rock mass properties into GSI and RMi systems using Monte Carlo method. Engineering Geology for Society and Territory, 6, 843-849. doi:10.1007/978-3-319-09060-3-152
[20]. Aladejare, A.E. and Akeju, V.O. (2020). Design and sensitivity analysis of rock slope using Monte Carlo simulation. Geotechnical and Geological Engineering, 38, 573-585. doi:10.1007/s10706-019-01048-z
[21]. Xavier, B.C., Egydio-Silva, M., Sadowski, G.R., de Assis Silva, B. and Takara, V.J. (2022). Construction of structural geological model using Monte Carlo simulation. Geotechnical and Geological Engineering, 40(3), 1345-1361. doi:10.1007/s10706-021-01967-w
[22]. Alves Cantini Cardozo, F., Cordova, D.P. and Petter, C.O. (2022). Risk analysis by Monte Carlo simulation in underground rock excavation projects. Dyna, 89(221), 24-30.
[23]. Sari, M., Karpuz, C. and Ayday, C. (2010). Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7), 959-969. doi:10.1016/j.cageo.2010.02.001
[24]. Fattahi, H., Varmazyari, Z. and Babanouri, N. (2019). Feasibility of Monte Carlo simulation for predicting deformation modulus of rock mass. Tunnelling and underground space technology, 89, 151-156. doi:10.1016/j.tust.2019.03.024
[25]. Weibull, W. (1939). A Statistical theory of the Strength of materials. Proc. Royal Academy Engrg Science, 15.
[26]. Ayalew, L., Reik, G. and Busch, W. (2002). Characterizing weathered rock masses-a geostatistical approach. International Journal of Rock Mechanics and Mining Sciences, 39(1), 105-114. doi:10.1016/S1365-1609(02)00004-7
[27]. Das, S.K. and Basudhar, P.K. (2009). Comparison of intact rock failure criteria using various statistical methods. Acta Geotechnica, 4, 223-231.
[28]. Ferrari, F., Apuani, T. and Giani, G.P. (2014). Rock Mass Rating spatial estimation by geostatistical analysis. International Journal of Rock Mechanics and Mining Sciences, 70, 162-176. doi:10.1016/j.ijrmms.2014.04.016
[29]. Jiang, Q., Zhong, S., Cui, J., Feng, X.T. and Song, L. (2016). Statistical characterization of the mechanical parameters of intact rock under triaxial compression: an experimental proof of the Jinping marble. Rock Mechanics and Rock Engineering, 49, 4631-4646. doi:10.1007/s00603-016-1054-5
[30]. Aladejare, A.E. and Wang, Y. (2017). Evaluation of rock property variability. Georisk, 11(1), 22-41. doi:10.1080/17499518.2016.1207784
[31]. Bozorgzadeh, N., Escobar, M.D. and Harrison, J.P. (2018). Comprehensive statistical analysis of intact rock strength for reliability-based design. International Journal of Rock Mechanics and Mining Sciences, 106, 374-387. doi:10.1016/j.ijrmms.2018.03.005
[32]. Wu, F., Wu, J., Bao, H., Li, B., Shan, Z. and Kong, D. (2021). Advances in statistical mechanics of rock masses and its engineering applications. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 22-45. doi:10.1016/j.jrmge.2020.11.003
[33]. Aladejare, A.E. and Wang, Y. (2019). Probabilistic characterization of Hoek-Brown constant mi of rock using Hoek’s guideline chart, regression model and uniaxial compression test. Geotechnical and Geological Engineering, 37, 5045-5060. doi:10.1007/s10706-019-00961-7
[34]. Ching, J., Phoon, K.K., Li, K.H. and Weng, M.C. (2019). Multivariate probability distribution for some intact rock properties. Canadian Geotechnical Journal, 56(8), 1080-1097. doi:10.1139/cgj-2018-0175
[35]. Pandit, B., Tiwari, G., Latha, G.M. and Babu, G.S. (2019). Probabilistic characterization of rock mass from limited laboratory tests and field data: associated reliability analysis and its interpretation. Rock Mechanics and Rock Engineering, 52, 2985-3001. doi:10.1007/s00603-019-01780-1
[36]. Mohammad, R., Mostafa, A., Abbas, M. and Farouq, H.M. (2015). Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system. International Journal of Mining Science and Technology, 25(1), 23-30. doi:10.1016/j.ijmst.2014.11.007
[37]. Grima, M.A. and Babuška, R. (1999). Fuzzy model for the prediction of unconfined compressive strength of rock samples. International journal of rock mechanics and mining sciences, 36(3), 339-349. doi:10.1016/S0148-9062(99)00007-8
[38]. Gokceoglu, C. and Zorlu, K., 2004. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence, 17(1), 61-72. doi:10.1016/j.engappai.2003.11.006
[39]. Sari, M. (2016). Estimating strength of rock masses using fuzzy inference system. EUROCK, ISRM. doi:10.1201/9781315388502-20
[40]. Sharma, L.K., Vishal, V. and Singh, T.N. (2017). Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement, 102, 158-169. doi:10.1016/j.measurement.2017.01.043
[41]. Heidari, M., Mohseni, H. and Jalali, S.H., (2018). Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotechnical and Geological Engineering, 36, 401-412. doi:10.1007/s10706-017-0334-5
[42]. Matos, Y.M.P.D., Dantas, S.A. and Barreto, G.D.A. (2019). A Takagi-Sugeno fuzzy model for predicting the clean rock joints shear strength. REM-International Engineering Journal, 72, 193-198. doi:10.1590/0370-44672018720083
[43]. Sari, M. (2019). Incorporation of uncertainty in estimating the rock mass uniaxial strength using a fuzzy inference system. Arabian Journal of Geosciences, 12(2), 18. doi:10.1007/s12517-018-4169-z
[44]. Boumezerane, D. (2020). Fuzzy-based parameter uncertainty in 1-D consolidation in clay. Geotechnical and Geological Engineering, 38(6), 6731-6740. doi:10.1007/s10706-020-01465-5
[45]. Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. doi:10.1016/S0019-9958(65)90241-X
[46]. Fayek, A.R. (2020). Fuzzy logic and fuzzy hybrid techniques for construction engineering and management. Journal of Construction Engineering and Management, 146(7), 04020064. doi: 10.1061/(ASCE)CO.1943-7862.0001854
[47]. Madanda, V. C., Sengani, F., & Mulenga, F. (2023). Applications of fuzzy theory-based approaches in tunnelling geomechanics: A state-of-the-art review. Mining, Metallurgy & Exploration, 40(3), 819-837. doi:10.1007/s42461-023-00767-5
[48]. Zhou, X., Nguyen, H., Hung, V. T., Lee, C. W., and Nguyen, V. D. (2023). Application of adaptive neuro-fuzzy inference system and differential evolutionary optimization for predicting rock displacement in tunnels and underground spaces. Structures, 48, 1891-1906. doi:10.1016/j.istruc.2023.01.059
[49]. Hosseini, S., Gordan, B., and Kalkan, E. (2024). Development of Z number-based fuzzy inference system to predict bearing capacity of circular foundations. Artificial Intelligence Review, 57(6), 146. doi:10.1007/s10462-024-10772-9
[50]. Gilks, W.R., Richardson, S. and Spiegelhalter, D. eds. (1995). Markov chain Monte Carlo in practice. CRC press.
[51]. Noorian-Bidgoli, M., and Jing, L. (2014). Effects of loading conditions on strength and deformability of fractured rocks–a numerical study. In: Rock engineering and rock mechanics: Structures in and on rock masses, Proceedings of EUROCK. CRC Press. p. 365e8.
[52]. Hoek, E. (1998). Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences, 35(1), 63-68. doi:10.1016/S0148-9062(97)00314-8
[53]. Low, B.K. (2021). Reliability-based design in soil and rock engineering: enhancing partial factor design approaches. CRC Press.
[54]. Rafiei Renani, H., and Cai, M. (2022). Forty-year review of the Hoek–Brown failure criterion for jointed rock masses. Rock Mechanics and Rock Engineering, 55(1), 439-461. doi:10.1007/s00603-021-02661-2