[1]. Hudson, J.A. and Harrison, J.P. (2000). Engineering rock mechanics: an introduction to the principles. Elsevier.
[2]. Noorian-Bidgoli, M. (2014). Strength and deformability of fractured rocks. Doctoral dissertation, KTH Royal Institute of Technology, Sweden.
[3]. Noorian-Bidgoli, M. and Jing, L. (2014). Anisotropy of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 156-164. doi:10.1016/j.jrmge.2014.01.009
[4]. Langford, J.C. and Diederichs, M.S. (2015). Quantifying uncertainty in Hoek–Brown intact strength envelopes. International Journal of Rock Mechanics and Mining Sciences, 74, 91-102. doi:10.1016/j.ijrmms.2014.12.008
[5]. Barton, N. and Quadros, E. (2015). Anisotropy is everywhere, to see, to measure, and to model. Rock Mechanics and Rock Engineering, 48(4), 1323-1339. doi:10.1007/s00603-014-0632-7
[6]. Noorian-Bidgoli, M., Zhao, Z. and Jing, L. (2013). Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5(6), 419-430. doi:10.1016/j.jrmge.2013.09.002
[7]. Pain, A., Kanungo, D.P. and Sarkar, S. (2014). Rock slope stability assessment using finite element based modelling-examples from the Indian Himalayas. Geomechanics and Geoengineering, 9 (3), 215-230. doi:10.1080/17486025.2014.883465
[8]. Tiwari, G. and Latha, G.M. (2016). Design of rock slope reinforcement: an Himalayan case study. Rock Mechanics and Rock Engineering, 49, 2075-2097. doi:10.1007/s00603-016-0913-4
[9]. Saeidi, O., Torabi, S.R., Ataei, M. and Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics and Mining Sciences, 68, 55-65. doi:10.1016/j.ijrmms.2014.02.007
[10]. Vargas, J.P., Koppe, J.C., Pérez, S. and Hurtado, J.P. (2017). The best estimation for shift duration in tunnel excavation using stochastic simulation. International Journal of Engineering and Technical Research, 7(4), 265037.
[11]. Kulatilake, P.H., Um, J.G., Wang, M., Escandon, R.F. and Narvaiz, J. (2003). Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East Tunnel, California, USA. Engineering geology, 70(1-2), 131-155. doi:10.1016/S0013-7952(03)00087-5
[12]. Meyer, T. and Einstein, H.H. (2002). Geologic stochastic modeling and connectivity assessment of fracture systems in the Boston area. Rock mechanics and rock engineering, 35(1), 23-44. doi:10.1007/s006030200007
[13]. Kim, K. and Gao, H. (1995). Probabilistic approaches to estimating variation in the mechanical properties of rock masses. International journal of rock mechanics and mining sciences & geomechanics abstracts, 32(2), 111-120. doi:10.1016/0148-9062(94)00032-X
[14]. Park, H. (1999). Risk analysis of rock slope stability and stochastic properties of discontinuity parameters in western North Carolina. Doctoral dissertation, Purdue University, United States.
[15]. Park, H.J., West, T.R. and Woo, I. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4), 230-250. doi:10.1016/j.enggeo.2005.02.001
[16]. Sari, M. (2009). The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass. International Journal of Rock Mechanics and Mining Sciences, 46(3), 613-626. doi:10.1016/j.ijrmms.2008.07.007
[17]. Mazraehli, M. and Zare, S. (2020). An application of uncertainty analysis to rock mass properties characterization at porphyry copper mines. Bulletin of Engineering Geology and the Environment, 79(7), 3721-3739. doi:10.1007/s10064-020-01758-2
[18]. Vargas, J.P., Koppe, J.C. and Pérez, S. (2014). Monte Carlo simulation as a tool for tunneling planning. Tunnelling and underground space technology, 40, 203-209. doi:10.1016/j.tust.2013.10.011
[19]. Sari, M. (2015). Incorporating variability and/or uncertainty of rock mass properties into GSI and RMi systems using Monte Carlo method. Engineering Geology for Society and Territory, 6, 843-849. doi:10.1007/978-3-319-09060-3-152
[20]. Aladejare, A.E. and Akeju, V.O. (2020). Design and sensitivity analysis of rock slope using Monte Carlo simulation. Geotechnical and Geological Engineering, 38, 573-585. doi:10.1007/s10706-019-01048-z
[21]. Xavier, B.C., Egydio-Silva, M., Sadowski, G.R., de Assis Silva, B. and Takara, V.J. (2022). Construction of structural geological model using Monte Carlo simulation. Geotechnical and Geological Engineering, 40(3), 1345-1361. doi:10.1007/s10706-021-01967-w
[22]. Alves Cantini Cardozo, F., Cordova, D.P. and Petter, C.O. (2022). Risk analysis by Monte Carlo simulation in underground rock excavation projects. Dyna, 89(221), 24-30.
[23]. Sari, M., Karpuz, C. and Ayday, C. (2010). Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7), 959-969. doi:10.1016/j.cageo.2010.02.001
[24]. Fattahi, H., Varmazyari, Z. and Babanouri, N. (2019). Feasibility of Monte Carlo simulation for predicting deformation modulus of rock mass. Tunnelling and underground space technology, 89, 151-156. doi:10.1016/j.tust.2019.03.024
[25]. Weibull, W. (1939). A Statistical theory of the Strength of materials. Proc. Royal Academy Engrg Science, 15.
[26]. Ayalew, L., Reik, G. and Busch, W. (2002). Characterizing weathered rock masses-a geostatistical approach. International Journal of Rock Mechanics and Mining Sciences, 39(1), 105-114. doi:10.1016/S1365-1609(02)00004-7
[27]. Das, S.K. and Basudhar, P.K. (2009). Comparison of intact rock failure criteria using various statistical methods. Acta Geotechnica, 4, 223-231.
[28]. Ferrari, F., Apuani, T. and Giani, G.P. (2014). Rock Mass Rating spatial estimation by geostatistical analysis. International Journal of Rock Mechanics and Mining Sciences, 70, 162-176. doi:10.1016/j.ijrmms.2014.04.016
[29]. Jiang, Q., Zhong, S., Cui, J., Feng, X.T. and Song, L. (2016). Statistical characterization of the mechanical parameters of intact rock under triaxial compression: an experimental proof of the Jinping marble. Rock Mechanics and Rock Engineering, 49, 4631-4646. doi:10.1007/s00603-016-1054-5
[30]. Aladejare, A.E. and Wang, Y. (2017). Evaluation of rock property variability. Georisk, 11(1), 22-41. doi:10.1080/17499518.2016.1207784
[31]. Bozorgzadeh, N., Escobar, M.D. and Harrison, J.P. (2018). Comprehensive statistical analysis of intact rock strength for reliability-based design. International Journal of Rock Mechanics and Mining Sciences, 106, 374-387. doi:10.1016/j.ijrmms.2018.03.005
[32]. Wu, F., Wu, J., Bao, H., Li, B., Shan, Z. and Kong, D. (2021). Advances in statistical mechanics of rock masses and its engineering applications. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 22-45. doi:10.1016/j.jrmge.2020.11.003
[33]. Aladejare, A.E. and Wang, Y. (2019). Probabilistic characterization of Hoek-Brown constant mi of rock using Hoek’s guideline chart, regression model and uniaxial compression test. Geotechnical and Geological Engineering, 37, 5045-5060. doi:10.1007/s10706-019-00961-7
[34]. Ching, J., Phoon, K.K., Li, K.H. and Weng, M.C. (2019). Multivariate probability distribution for some intact rock properties. Canadian Geotechnical Journal, 56(8), 1080-1097. doi:10.1139/cgj-2018-0175
[35]. Pandit, B., Tiwari, G., Latha, G.M. and Babu, G.S. (2019). Probabilistic characterization of rock mass from limited laboratory tests and field data: associated reliability analysis and its interpretation. Rock Mechanics and Rock Engineering, 52, 2985-3001. doi:10.1007/s00603-019-01780-1
[36]. Mohammad, R., Mostafa, A., Abbas, M. and Farouq, H.M. (2015). Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system. International Journal of Mining Science and Technology, 25(1), 23-30. doi:10.1016/j.ijmst.2014.11.007
[37]. Grima, M.A. and Babuška, R. (1999). Fuzzy model for the prediction of unconfined compressive strength of rock samples. International journal of rock mechanics and mining sciences, 36(3), 339-349. doi:10.1016/S0148-9062(99)00007-8
[38]. Gokceoglu, C. and Zorlu, K., 2004. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence, 17(1), 61-72. doi:10.1016/j.engappai.2003.11.006
[39]. Sari, M. (2016). Estimating strength of rock masses using fuzzy inference system. EUROCK, ISRM. doi:10.1201/9781315388502-20
[40]. Sharma, L.K., Vishal, V. and Singh, T.N. (2017). Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement, 102, 158-169. doi:10.1016/j.measurement.2017.01.043
[41]. Heidari, M., Mohseni, H. and Jalali, S.H., (2018). Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotechnical and Geological Engineering, 36, 401-412. doi:10.1007/s10706-017-0334-5
[42]. Matos, Y.M.P.D., Dantas, S.A. and Barreto, G.D.A. (2019). A Takagi-Sugeno fuzzy model for predicting the clean rock joints shear strength. REM-International Engineering Journal, 72, 193-198. doi:10.1590/0370-44672018720083
[43]. Sari, M. (2019). Incorporation of uncertainty in estimating the rock mass uniaxial strength using a fuzzy inference system. Arabian Journal of Geosciences, 12(2), 18. doi:10.1007/s12517-018-4169-z
[44]. Boumezerane, D. (2020). Fuzzy-based parameter uncertainty in 1-D consolidation in clay. Geotechnical and Geological Engineering, 38(6), 6731-6740. doi:10.1007/s10706-020-01465-5
[45]. Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. doi:10.1016/S0019-9958(65)90241-X
[46]. Fayek, A.R. (2020). Fuzzy logic and fuzzy hybrid techniques for construction engineering and management. Journal of Construction Engineering and Management, 146(7), 04020064. doi: 10.1061/(ASCE)CO.1943-7862.0001854
[47]. Madanda, V. C., Sengani, F., & Mulenga, F. (2023). Applications of fuzzy theory-based approaches in tunnelling geomechanics: A state-of-the-art review. Mining, Metallurgy & Exploration, 40(3), 819-837. doi:10.1007/s42461-023-00767-5
[48]. Zhou, X., Nguyen, H., Hung, V. T., Lee, C. W., and Nguyen, V. D. (2023). Application of adaptive neuro-fuzzy inference system and differential evolutionary optimization for predicting rock displacement in tunnels and underground spaces. Structures, 48, 1891-1906. doi:10.1016/j.istruc.2023.01.059
[49]. Hosseini, S., Gordan, B., and Kalkan, E. (2024). Development of Z number-based fuzzy inference system to predict bearing capacity of circular foundations. Artificial Intelligence Review, 57(6), 146. doi:10.1007/s10462-024-10772-9
[50]. Gilks, W.R., Richardson, S. and Spiegelhalter, D. eds. (1995). Markov chain Monte Carlo in practice. CRC press.
[51]. Noorian-Bidgoli, M., and Jing, L. (2014). Effects of loading conditions on strength and deformability of fractured rocks–a numerical study. In: Rock engineering and rock mechanics: Structures in and on rock masses, Proceedings of EUROCK. CRC Press. p. 365e8.
[52]. Hoek, E. (1998). Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences, 35(1), 63-68. doi:10.1016/S0148-9062(97)00314-8
[53]. Low, B.K. (2021). Reliability-based design in soil and rock engineering: enhancing partial factor design approaches. CRC Press.
[54]. Rafiei Renani, H., and Cai, M. (2022). Forty-year review of the Hoek–Brown failure criterion for jointed rock masses. Rock Mechanics and Rock Engineering, 55(1), 439-461. doi:10.1007/s00603-021-02661-2