[1] Altun, D. (2017). Mathematical modelling of vertical roller mills.
[2] Altun, D., Benzer, H., Aydogan, N., & Gerold, C. (2017). Operational parameters affecting the vertical roller mill performance. Minerals Engineering, 103, 67-71.
[3] Altun, D., Gerold, C., Benzer, H., Altun, O., & Aydogan, N. (2015). Copper ore grinding in a mobile vertical roller mill pilot plant. International Journal of Mineral Processing, 136, 32-36.
[4] Authenrieth, M., Hyttrek, T., Reintke, A., & McGarel, S. (2012). ILM-master for VRMs. Int. Cement Rev.
[5] Barani, K., Azadi, M., & Fatahi, R. (2022). An approach to measuring and modelling the residence time distribution of cement clinker in vertical roller mills. Mineral Processing and Extractive Metallurgy, 131(2), 158-165.
[6] Belmajdoub, F., & Abderafi, S. (2023). Efficient machine learning model to predict fineness, in a vertical raw meal of Morocco cement plant. Results in Engineering, 17, 100833.
[7] Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
[8] Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk management. Computational Economics, 57(1), 203-216.
[9] Chelgani, S. C., Homafar, A., & Nasiri, H. (2024). CatBoost-SHAP for modeling industrial operational flotation variables–A “conscious lab” approach. Minerals Engineering, 213, 108754.
[10] Chelgani, S. C., Nasiri, H., & Tohry, A. (2021). Modeling of particle sizes for industrial HPGR products by a unique explainable AI tool-A “Conscious Lab” development. Advanced Powder Technology, 32(11), 4141-4148.
[11] Chelgani, S. C., Nasiri, H., Tohry, A., & Heidari, H. R. (2023). Modeling industrial hydrocyclone operational variables by SHAP-CatBoost-A “conscious lab” approach. Powder technology, 420, 118416.
[12] Fahrland, T., & Zysk, K. (2013). Cements ground in the vertical roller mill fulfil the quality requirements of the market. Cement International, 11(2), 64-69.
[13] Fatahi, R., Abdollahi, H., Noaparast, M., & Hadizadeh, M. (2025). Modeling the working pressure of a cement vertical roller mill using SHAP-XGBoost: A “conscious lab of grinding principle” approach. Powder technology, 120923.
[14] Fatahi, R., Khosravi, R., Siavoshi, H., Yazdani, S., Hadavandi, E., & Chehreh Chelgani, S. (2021). Ventilation prediction for an industrial cement raw ball mill by bnn—a “conscious lab” approach. Materials, 14(12), 3220.
[15] Fatahi, R., Nasiri, H., Dadfar, E., & Chehreh Chelgani, S. (2022). Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: a" conscious lab" approach. Scientific Reports, 12(1), 7543.
[16] Fatahi, R., Nasiri, H., Homafar, A., Khosravi, R., Siavoshi, H., & Chehreh Chelgani, S. (2023). Modeling operational cement rotary kiln variables with explainable artificial intelligence methods–a “conscious lab” development. Particulate Science and Technology, 41(5), 715-724.
[17] Fatahi, R., Pournazari, A., & Shah, M. P. (2022). A cement Vertical Roller Mill modeling based on the number of breakages. Advanced Powder Technology, 33(10), 103750.
[18] Fedoryshyn, R., Nykolyn, H., Zagraj, V., & Pistun, Y. (2012). The improved system for automation and optimization of solid material grinding by means of ball mills. Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium,
[19] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
[20] Fujimoto, S. (1993). Reducing specific power usage in cement plants. World Cement;(United Kingdom), 24(7).
[21] Gong, H., Sun, Y., Shu, X., & Huang, B. (2018). Use of random forests regression for predicting IRI of asphalt pavements. Construction and Building Materials, 189, 890-897.
[22] Harder, J. (2010). Grinding trends in the cement industry. ZKG INTERNATIONAL, 63(4), 46-+.
[23] Hu, H., Li, Y., Lu, Y., Li, Y., Song, G., & Wang, X. (2024). Numerical Study of Flow Field and Particle Motion Characteristics on Raw Coal Vertical Roller Mill Circuits. Minerals Engineering, 218, 108997.
[24] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
[25] Li, B., Chen, G., Si, Y., Zhou, X., Li, P., Li, P., & Fadiji, T. (2022). GNSS/INS integration based on machine learning LightGBM model for vehicle navigation. Applied sciences, 12(11), 5565.
[26] Lin, X.-F., & Zhang, M.-Q. (2016). Modelling of the vertical raw cement mill grinding process based on the echo state network. 2016 12th World Congress on Intelligent Control and Automation (WCICA),
[27] Little, W. (2021). Performance of the vertical roller mill in a mineral processing application when coupled with internal and external classifiers.
[28] Liu, C., Chen, Z., Zhang, W., Yang, C., Mao, Y., Yu, Y., & Xie, Q. (2020). Effects of blade parameters on the flow field and classification performance of the vertical roller mill via numerical investigations. Mathematical Problems in Engineering, 2020(1), 3290694.
[29] Liu, H., Xiao, Q., Jin, Y., Mu, Y., Meng, J., Zhang, T., Jia, H., & Teodorescu, R. (2022). Improved LightGBM-based framework for electric vehicle lithium-ion battery remaining useful life prediction using multi health indicators. Symmetry, 14(8), 1584.
[30] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
[31] Mangalathu, S., Shin, H., Choi, E., & Jeon, J.-S. (2021). Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. Journal of Building Engineering, 39, 102300.
[32] Mao, H., Deng, X., Jiang, H., Shi, L., Li, H., Tuo, L., Shi, D., & Guo, F. (2021). Driving safety assessment for ride-hailing drivers. Accident Analysis & Prevention, 149, 105574.
[33] Matin, S., Hower, J. C., Farahzadi, L., & Chelgani, S. C. (2016). Explaining relationships among various coal analyses with coal grindability index by Random Forest. International Journal of Mineral Processing, 155, 140-146.
[34] Meng, Q., Wang, Y., Xu, F., & Shi, X. (2015). Control strategy of cement mill based on bang-bang and fuzzy PID self-tuning. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER),
[35] Ouallouche, F., Lazri, M., & Ameur, S. (2018). Improvement of rainfall estimation from MSG data using Random Forests classification and regression. Atmospheric Research, 211, 62-72.
[36] Pareek, P., & Sankhla, V. S. (2021). Increase productivity of vertical roller mill using seven QC tools. IOP Conference Series: Materials Science and Engineering,
[37] Sahasrabudhe, R., Sistu, P., Sardar, G., & Gopinath, R. (2006). Control and optimization in cement plants. IEEE Control Systems Magazine, 26(6), 56-63.
[38] Schaefer, H. (2001). Loesche vertical roller mills for the comminution of ores and minerals. Minerals Engineering, 14(10), 1155-1160.
[39] Stanišić, D., Jorgovanović, N., Popov, N., & Čongradac, V. (2015). Soft sensor for real-time cement fineness estimation. ISA transactions, 55, 250-259.
[40] Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228-1242.
[41] Worrell, E., Martin, N., & Price, L. (2000). Potentials for energy efficiency improvement in the US cement industry. Energy, 25(12), 1189-1214.
[42] Xu, B., & Sun, Y. (2020). On fault feature extraction and diagnosis of vertical mill. Engineering Research Express, 2(4), 045006.
[43] Yan-yan, N., Guang, Z., Ming-zhe, Y., & Zhuo, W. (2011). Design of intelligent control system for Vertical Roller Mill. 2011 2nd International Conference on Intelligent Control and Information Processing,
[44] Zhu, M., Ji, Y., Zhang, Z., & Sun, Y. (2020). A data-driven decision-making framework for online control of vertical roller mill. Computers & Industrial Engineering, 143, 106441.