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A B S T R A C T 

 

Vertical Roller Mills (VRMs) are widely used in energy-intensive industries like cement, steel, and chemicals due to their efficiency in grinding, 
drying, and material transport. However, two critical aspects remain underexplored: the correlation between operational variables and 
differential pressure (dp) and the influence of key parameters, such as feed rate, on mill performance. To address these gaps, this study utilized 
advanced machine learning methods, including Random Forest (RF), LightGBM, and Shapley Additive Explanations (SHAP), integrated 
within a Conscious Lab-based (CL) framework. The study focused on modelling feed rate as a manipulated and dp as a controlled variable, 
with SHAP employed to analyze variable interactions. Findings identified operational factors such as working pressure, dp, counter pressure, 
and mill fan speed as significant determinants of feed rate setpoints. Working pressure emerged as the most influential variable impacting 
both dp and feed rate, establishing its critical role in stabilizing operations and regulating performance. Key variables, such as working 
pressure, mill fan speed, and feed rate, were also identified as primary contributors to dp, reflecting the principles of the CL framework for 
dynamic control. Validation tests revealed LightGBM as the best-performing algorithm, achieving the highest R² values (0.98 and 0.97) and 
lowest RMSE (1.34 and 0.16) for feed rate and dp prediction, respectively, making it the optimal model for predicting feed rate and dp. This 
study highlighted the potential of combining machine learning with the CL framework to accurately model complex relationships among 
variables, optimize VRM operations, and advance sustainable energy-efficient practices in the cement industry. 
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1. Introduction 

The primary advantage of vertical roller mills (VRM) is their energy 
efficiency, which is crucial in mineral processing and cement 
production, where grinding consumes approximately 60% of total 
electrical energy (Fujimoto, 1993). Grinding processes account for 
approximately one-third of the total energy consumption in cement 
production, with an average of 57 kWh of electrical energy used per ton 
of cement for clinker grinding (Worrell et al., 2000). VRMs are high-
capacity grinding equipment widely utilized in energy-intensive 
industries, including cement, steel, and chemicals (Zhu et al., 2020), 
combining grinding, drying, conveying, and powder separation 
functions within a single unit (Harder, 2010). VRMs have become 
preferred due to their superior grinding efficiency, lower energy 
consumption, and enhanced drying capabilities (Harder, 2010), offering 
benefits that can eliminate tertiary and even secondary crushing stages 
(Fahrland & Zysk, 2013; Schaefer, 2001). These multifunctional systems 
integrate grinding, drying, conveying, and powder separation (Altun et 
al., 2017; Harder, 2010), with operational parameters significantly 
influencing grinding outcomes, energy efficiency, and product quality 
(Altun et al., 2017). Conventional VRM operation relies heavily on 
operator experience for manual parameter adjustment (Zhu et al., 
2020), and most VRM studies remain theoretical or laboratory-based 
(Altun, 2017). Process control involves manipulating variables, such as 
working pressure, feed rate, and differential pressure (Little, 2021),  

 
 
 
which can lead to operational instability, increased energy consumption, 
and reduced grinding efficiency (Meng et al., 2015). The variation in 
operator experience poses risks to mechanical components and process 
stability. VRMs operate under a negative pressure created by the mill 
fan to facilitate powder transportation. Enhancing classification 
efficiency and minimizing pressure differentials are crucial for reducing 
fan energy consumption. Various studies have examined variables 
affecting VRM grinding circuits (Liu et al., 2020), including material 
breakage behavior (Fatahi, Pournazari, et al., 2022), raw meal fineness 
prediction (Belmajdoub & Abderafi, 2023), material residence time 
(Barani et al., 2022), and energy consumption reduction (Altun et al., 
2015). Research has advanced toward real-time cement fineness 
estimation (Stanišić et al., 2015), production index prediction (Lin & 
Zhang, 2016), and intelligent automatic control systems (Yan-yan et al., 
2011). Mathematical and numerical modelling studies have analyzed 
flow field characteristics and blade parameters, revealing their 
significant impact on classification efficiency, differential pressure, and 
overall VRM performance (Hu et al., 2024; Liu et al., 2020). The 
Conscious Lab-based (CL) approach, an artificial intelligence-based 
framework, leverages operational data to develop dynamic AI systems 
that can reduce laboratory costs, address scale-up issues, save time, and 
make decisions based on actual factory conditions rather than 
theoretical concepts. This AI-based structure utilizes explainable AI 
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algorithms based on control room monitoring data, optimizing 
production through operator training  (Chelgani et al., 2024; Fatahi et 
al., 2025; Fatahi et al., 2021; Fatahi, Nasiri, et al., 2022; Fatahi et al., 2023). 
VRM stability depends significantly on differential pressure, discharged 
gas temperature, ventilation rate, and mill inlet negative pressure ( Yan-
yan et al., 2011; Authenrieth et al., 2012;). Differential pressure, the 
difference between the mill inlet and outlet pressurereflects the material 
load inside the mill and correlates with other process variables 
(Fedoryshyn et al., 2012; Pareek & Sankhla, 2021). Despite extensive 
VRM research, two critical areas remain understudied: (1) the 
correlation between operational variables and differential pressure, and 
(2) the effects and correlation of key parameters like feed rate. This 
combined research employs machine learning methods, including 
Random Forest, LightGBM, and Shapley Additive Explanations 
(SHAP), to predict differential pressure and model feed rate as a 
manipulated variable and main drive power as a controlled variable. 
Understanding these complex interactions and relationships will guide 
optimal VRM operation, performance, and energy efficiency while 
enabling operators to make more rational decisions across various 
operational conditions. 

2. Material and methods 

2.1. Dataset collection 

The dataset for modelling vertical roller mill (VRM) processes was 
systematically gathered through continuous monitoring of operational 
parameters over an extended period. Data collection occurred in the 
central control room of Production Line 9 at Tehran Cement Plant 
(Tehran, Iran), one of Iran’s largest cement production complexes with 
nine production lines and a production capacity of 13800 t/day. 
Monitoring spanned 1,026 hours under diverse operational conditions, 
representing actual industrial settings rather than laboratory conditions. 
The data collection process integrated scientific knowledge with 
operational expertise from experienced VRM operators. Process data 
was recorded by applying appropriate set points to manipulable 
variables and capturing the resulting responses from actuator systems. 
This comprehensive approach ensured that the dataset reflected real-
world operational scenarios, including operator decisions and system 
responses to programmable logic controller (PLC) commands. Fig. 1 
shows the schematic of data collection stages from the VRM cement 
grinding circuit. 

 

 
 

Fig. 1 The schematic of dataset collection stages from the cement VRM grinding 
circuit. 

2.2. Cement VRM grinding process 

The cement VRM operates through a sophisticated grinding 
mechanism powered by a main drive connected via a vertical gearbox. 
Before the operation begins, a hydraulic system lifts the master and 
support rollers from the grinding table. The grinding process initiates 
when feed material, consisting primarily of clinker (with d80 
approximately 32 mm) and gypsum in a 97:3 ratio, is introduced to the 
center of the rotating table. Centrifugal forces drive these materials 
toward the edges where they encounter significant pressure from the 
master rollers, resulting in grinding action between the rollers and the 
table surface. The VRM features a unique four-roller mechanism: two 
large master rollers responsible for grinding operations and two smaller 
support rollers that stabilize material layering on the grinding table. Bed 
breakage stability is maintained through both support roller action and 
water injection. After grinding, the processed material passes through a 
dam ring that regulates the height of the material layer before being 
collected by hot gas entering through a nozzle ring. This hot gas serves 
dual purposes-drying the materials and transporting finer particles to a 
dynamic separator above the mill. The cement powder exits with the gas 
stream and is collected in a bag house, while coarser particles return to 
the table for additional grinding. Many modern VRMs incorporate 
external recirculation systems where coarse materials falling into the 
mill’s gas ducts through the louver ring are reintroduced alongside fresh 
feed via conveyors or bucket elevators, achieving significant energy 
savings (Authenrieth et al., 2012; Fedoryshyn et al., 2012; Xu & Sun, 
2020; Pareek & Sankhla, 2021;; Fatahi, Pournazari, et al., 2022). The 
process control parameters of the cement VRM are shown in Table 1. 

2.3. Shapley Additive exPlanations (SHAP) 

Shapley Additive Explanations (SHAP) are an innovative approach 
introduced by Lundberg and Lee to enhance the interpretability of 
machine learning models (Lundberg & Lee, 2017). SHAP delivers local 
and global explanations by assigning feature importance at the instance 
level and across the dataset. It breaks down model outputs into feature-
specific contributions, enabling tasks like debugging, feature 
engineering, and decision optimization (Mangalathu et al., 2021; Mao et 
al., 2021). Visualizing feature importance and prediction explanations 
enhances model interpretability and validation. Mathematically, 
outputs are expressed as the weighted sum of SHAP values for input 
features : 

 

𝒇(𝒙) =  𝝋𝟎 +  ∑ 𝝋𝒊𝑿𝒊
′𝑵

𝒊=𝟏                                                                         (1) 
 

Here, f is the model’s mapping function, N is the number of input 
features, 𝝋𝟎 is the average prediction and 𝝋𝒊 is the SHAP value for the 
i-th feature. The coalition vector 𝑿𝒊

′ is computed from the original input 
Xi using a mapping function 𝑿𝒊 = 𝒉𝒙 (𝑿𝒊

′)  (Bussmann et al., 2021; 
Mangalathu et al., 2021). 

2.4. LightGBM 

Gradient Boosting Decision Tree (GBDT) is highly efficient and 
reliable but faces challenges with big data as its scalability decreases due 
to the need to scan all instances (Friedman, 2001). LightGBM, 
introduced by Microsoft in 2017, addresses these issues (Ke et al., 2017). 
Unlike other algorithms, LightGBM builds trees by focusing on leaves 
with the most loss, enhancing accuracy. Its speed benefits from 
Gradient-based One-Side Sampling (GOSS), and Exclusive Feature 
Bundling (EFB) (Ke et al., 2017). It minimizes the loss function while 
adding weak learners, with the final prediction being the weighted sum 
of their forecasts (Liu et al., 2022). 

 

𝐥𝐨𝐬𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 = (𝒚𝒊, �̂�𝐢)                                                                         (2) 
 

For each iteration)t(, the negative gradient of the loss function 
relative to the predictions made by the previous model is calculated as: 

 

𝒈𝒊
(𝒕)

= −
𝛛𝐋(𝐲𝐢,�̂�𝐢

(𝐭−𝟏))

𝛛�̂�𝐢
𝐭−𝟏                                                                                (3)
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Table 1. The process control parameters of the cement VRM grinding circuit. 

Variables Description of variables Max Min Mean STD 
Mill output pressure 
Mill body vibrating (mm/s) 

The outlet pressure of the mill 
The vibration of the mill body due to operational parameters 

-27.95 
8.84 

-33.04 
2.31 

-29.33 
4.12 

0.61 
0.89 

Main Drive (Kw) The power drawing of the main motor 1887.80 1005.10 1552.713 224.24 
Mill fan power (Kw) The power drawing of the motor mill fan 677.44 513.38 555.77 19.79 
Water injection (m3/hr) The rate of water spray for stabilization of bed breakage. 1.51 1.25 1.43 0.07 
Differential pressure (mbar) The differential pressure between the inlet and outlet of the mill 36.61 30.62 33.23 0.92 
Mill body vibrating (mm/s) The vibration of the mill body due to operational parameters 8.84 2.31 4.12 0.89 
Counter pressure (bar) The applied pressure for adjustment of the distance of the master roller from the table 16.90 14.35 15.29 0.61 
Feed rate (t/h) A load of mill feed 29.27 86.41 114.08 9.51 
Silo Elevator (A) The amper drawing of the main elevator motor 64.71 44.49 55.38 4.70 
Bed Height(cm) The thickness of the material bed 30 0.0 4.94 9.17 
Mill fan speed (rpm) The speed of the mill fan impeller 813.27 747.99 767.32 9.04 

 
 
In LightGBM, the tree is constructed in a leaf-wise approach. For each 

node )m(, the optimal split is determined in a way that minimizes the 

loss function. In this context, if )S( represents the set of samples that 
reach leaf node ‘m’, the optimal split point is found by: 

 

𝐬𝐩𝐥𝐢𝐭𝐦 = 𝐚𝐫𝐠 𝐦𝐢𝐧𝐬𝐩𝐥𝐢𝐭 ∑ 𝐋(𝐢∈𝐒 𝐲𝐢, �̂�𝐢
(𝐭−𝟏) + 𝐬𝐩𝐥𝐢𝐭)                                (4) 

 

Once the tree construction is completed, the output value for each 
leaf node ‘m’ is estimated by calculating a weighted sum of the negative 
gradient of the samples in that leaf: 

 

𝐥𝐞𝐚𝐟_𝐨𝐮𝐭𝐩𝐮𝐭𝐦 = −
∑ 𝐠𝐢

(𝐭)
𝐢∈𝐒

∑ 𝐡𝐢
(𝐭)

+𝛌𝐢∈𝐒

                                                                     (5) 
 

LightGBM uses histogram-based feature splitting and gradient-based 
one-side sampling, making it practical, especially for skewed datasets 
under similar parameters (Li et al., 2022). 

2.5. Random forest 

Random Forest (RF), a tree-based predictive model renowned for 
handling high-dimensional data and for not relying on parametric 
assumptions, was introduced by Breiman and utilizes ensemble learning 
techniques for tasks such as classification and regression (Matin et al., 
2016). The RF method builds upon bootstrap aggregating (bagging) by 
incorporating random variable selection at each node (Breiman, 1996). 
Essentially, it extends bagging by randomly selecting a subset of features 
within each data sample. RF modelling offers several advantages, 
including reduced overfitting, minimal tunable parameters, robustness 
to outliers, low bias, and decreased variance compared to traditional 
decision trees (DT) (Gong et al., 2018; Ouallouche et al., 2018) 
.Typically, RF generates an ensemble of N decision tree estimators, with 
the final prediction calculated as follows: 

 

�̂�(𝐗) =
𝟏

𝑵
∑ �̂�𝐧

𝑵
𝒏=𝟏 (𝑿)                                                                           (6) 

 

where x represents the input feature vector, and �̂�𝐧(𝑿) denotes the 
nth decision tree’s prediction (Wager & Athey, 2018). 

3. Results and discussion 

3.1. Relationship of parameters assessments 

The linear assessment results indicated the likelihood of multiple 
multivariate relationships among the operational variables in the 
cement VRM. Numerous studies have highlighted the potential for 
complex interactions between operational variables in the cement 
industry (Fatahi et al., 2021; Fatahi, Nasiri, et al., 2022; Fatahi et al., 
2023). Based on Fig. 2, when the target variable for modelling is the feed 
rate, it shows the highest correlation with the following parameters in 
descending order: working pressure (0.94), water injection (0.83), main 
drive (0.81), and dp (0.80). Similarly, the parameters with the strongest 
linear correlation to dp are working pressure (0.83), mill fan speed 
(0.82), and feed rate (0.80). In contrast, mill output (-0.592), counter 
pressure (-0.332), and bed height (-0.255) display negative correlations 

with dp, highlighting both positive and negative relationships among 
the operational variables. 

3.2. SHAP analyses of operational variables 

SHAP is a highly effective technique for interpreting machine 
learning models, offering precise insights into the contribution of each 
variable to the model’s predictions (Chelgani et al., 2021). Fig. 3 which 
ranks variables based on importance, clearly illustrates their individual 
effects. The SHAP analysis revealed a ranking pattern similar to the 
Pearson correlation evaluation regarding parameter importance. For 
modelling with feed rate as the target variable, SHAP indicated that 
working pressure and dp have the most significant influence on the 
model, both showing a positive correlation on average. As the feed rate 
increases, operators raise the working pressure to enhance 
comminution efficiency, resulting in higher dp values (Yan-yan et al., 
2011). 

Fig. 4 derived from SHAP analysis, identifies three key variables that 
significantly influencing dp prediction in cement vertical roller mills. 
Their average impact on the model’s output highlights that Dp is 
primarily affected by the material feed rate, the mill fan flow rate (or fan 
speed), and the working pressure (Pareek & Sankhla, 2021). 

SHAP can identify and analyze multi-correlations and complex 
patterns among variables (Chelgani et al., 2023). Fig. 5 presents the 
SHAP analysis which highlights the multi-correlation between key 
parameters impacting feed rate modelling. The working pressure 
increases as operators raise the feed or product rate, as noted by Altun 
et al., (2017). At lower feed rates, the working pressure remains minimal 
(blue points) whereas at higher feed rates, the pressure rises 
significantly (red points). DP which reflects the difference between the 
inlet and outlet pressures of the mill, indicates the mill’s internal load 
and feed rate (Yan-yan et al., 2011). The inter-correlation between feed 
rate and dp shows that up to 115 t/h, increasing the feed rate leads to a 
sharp rise in dp, while beyond this threshold, the increase becomes more 
gradual. Feed rate variations during VRM operation influence the mill’s 
load and, consequently, the dp. Adjusting the feed rate during operation 
requires increasing the working pressure which allows the rollers to 
apply greater force on the grinding bed for effective comminution. 
Counter pressure plays a role in this process by bringing the rollers 
closer to the table to optimize the application of working pressure. 

Fig. 6 shows that the SHAP analysis reveals that mill fan speed 
significantly impacts on dp, with SHAP values transitioning from 
negative to positive as fan speed increases from 750 to 810 rpm. The 
highest dp values (around 36) are observed at 810–815 rpm fan speeds 
where the inlet-outlet pressure differential is maximized. Similarly, 
working pressure shows a positive, though non-linear, correlation with 
dp. At lower pressures (80–90), SHAP values are negative, improving as 
pressure rises to 110, with peak dp performance in the 105–110 range. 
Operators align higher working pressures with feed rate increases to 
maintain stable operation. Feed rate exhibits a more complex 
relationship. At lower feed rates (85–95), SHAP values are negative, 
becoming positive around 100–105. Data scatter in the middle range 
(100–115) suggests the influence of additional factors. At higher rates 
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Fig. 2. The Pearson correlation between process variables of the cement VRM grinding circuit. 

 

 
Fig. 3. Ranking variables based on their mean SHAP value for feed rate prediction. 

 

 
Fig. 4. Ranking variables based on their mean SHAP value for dp prediction. 

 
(115–125), SHAP values remain positive, with peak dp observed at feed 
rates of 110–115. Like fan speed, higher feed rates amplify the pressure 
differential. Maximum dp performance is achieved through high mill 
fan speed, elevated working pressure, and moderate to high feed rates. 

Working pressure shows the most linear and predictable relationship 
with dp, while fan speed and working pressure have more significant 
impacts than feed rate. Stabilizing dp and maintaining a consistent 
material bed under the rollers is essential, as a thick bed increases energy 
consumption, while a thin bed risks internal wear in the mill 
(Sahasrabudhe et al., 2006). 

 

 

 

 
 

Fig. 5. SHAP values for multi-interactions dependent operational variables on feed 
rate prediction. 
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Fig. 6. SHAP values for multi-interactions dependent operational variables on dp 
prediction. 

 

3.3. Feed rate and dp prediction 

During the modelling process for predicting feed rate and dp, the 
dataset was randomly split into three parts: 70% was allocated for 
training. In contrast, two equal portions of 15% were designated for 
testing and validation. Several hyperparameters were explored to 
optimize the model’s performance using a randomized search strategy. 
This optimization process utilized the validation set to determine the 
best combination of parameters. The outcomes of this process are 
summarized in Table 2, which details the optimal values for the model’s 
hyperparameters. 

Based on the cross-validation results shown in Table 2 and Fig. 7, both 
the LightGBM and RF algorithms successfully predicted the controlled 
variable “dp” and the adjustable variable “feed rate” with satisfactory 
accuracy. Among the tested algorithms, LightGBM outperformed RF in 
terms of predictive precision. Regarding performance metrics, 
LightGBM achieved the highest accuracy, with an R² of 0.98,  an RMSE 
of 1.34 and 0.96, and an RMSE of 0.16 for feed rate and dp prediction, 
respectively, while RF performed slightly less effectively with an R² 
of 0.93 and an RMSE of 1.95 and 0.92 and an RMSE of 0.18 for feed rate 
and dp prediction, respectively. These findings underscore LightGBM’s 
ability to predict mill feed rate set points and differential pressure 
efficiently. 

 
Fig. 7. Comparison between predicted and actual values by LightGBM in the 
validation step. 

 

The results indicated that the SHAP-lightGBM model, as an advanced AI system, 
has successfully designed and implemented a CL system for Vertical Roller Mills 
(VRM). This model is capable of accurately modelling feed rates and main drive 
power. Furthermore, the SHAP analyses comprehensively reveal nonlinear 
relationships among various parameters. Studies show that this system can be 
utilized for modelling, controlling, and maintaining cement VRM circuits on an 
industrial scale. This capability enables operators to identify key parameters 
during operations, assess the effects of critical factors on feed rate increases (an 
essential operational parameter), optimize energy consumption by identifying 
factors influencing the main drive power, and take measures to enhance 
operational efficiency. The SHAP-lightGBM model is an effective tool for 
optimizing energy consumption and identifying key parameters in industrial 
processes. 

4. Conclusions 

This study investigated the variables influencing feed rate and dp in 
VRM, using machine learning algorithms such as RF and LightGBM. 
The developed models accurately reflected the feed rate setpoint 
performance and the mill's subsequent dp while identifying linear and 
complex nonlinear relationships among operational variables. SHAP 
analyses highlighted the impact of variables such as working pressure, 
dp, and counter pressure on operators' determination of the feed rate 
setpoint. Furthermore, for dp, three key variables, working pressure, mill 
fan speed, and feed rate, were identified in order of significance, aligning 
with the operational principles under a CL approach. SHAP data also 
revealed that working pressure, a shared variable for predicting both 
feed rate and dp, had the most significant impact, establishing it as one 
of the critical operational parameters in VRM. This parameter is crucial 
in regulating mill feed rate and affects the mill’s dp. Model evaluation 
via validation tests demonstrated the algorithms’ stable performance 
and high generalization capacity. Among the models, LightGBM 
exhibited the highest R² value, equal to 0.98 and 0.97 for feed rate and 
dp prediction, respectively, and the lowest RMSE, equal to 1.34 and 0.16, 
positioning it as the best choice for predicting feed rate and dp. Overall, 
using the CL approach combined with machine learning algorithms 
demonstrated high-quality modelling in identifying complex 
relationships among operational variables, paving new paths for 
sustainable control and optimizing VRM performance in the cement 
industry. 
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