[1] Backus, G. E., Gilbert, F., (1967). Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophysical Journal of the Royal Astronomical Society, 13, 1-3, 247–276.
[2] Backus, G.E., Gilbert, F., (1968). The Resolving power of Gross Earth Data, Geophysical Journal of the Royal Astronomical Society, 16, 169–205.
[3] Backus, G.E., Gilbert, F., (1970). Uniqueness in the Inversion of inaccurate Gross Earth Data, Philosophical Transactions of the Royal Society of London A, 266, 123-192.
[4] Mosegaard, K., Tarantola, A., (1995). Monte Carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100(B7),12431–12447
[5] Gouveia, W. P., Scales, J. A., (1997). Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems 13, 323–349.
[6] Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophysical Research Letters, 34(16):L16, 311
[7] Akca I, Basokur AT (2010) Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysics 75(1):F15–F22
[8] Roy L, Sen MK, Blankenship DD, Stoffa PL, Richter TG (2005) Inversion and uncertainty estimation of gravity data using simulated annealing: an application over Lake Vostok, East Antarctica. Geophysics 70(1):J1–J12
[9] Wang R, Yin C, Wang M, Wang G (2012) Simulated annealing for controlled-source audio-frequency magnetotelluric data inversion. Geophysics 77(2):E127–E133.
[10] Reading, A. M., Cracknell, M. J., and Sambridge, M., (2011). Turning geophysical data into geological information or why a broader range of mathematical strategies is needed to better enable discovery. Preview, 151,24–29. https://doi.org/10.1071/PVv2011n151p24.
[11] Fernández-Muñiz , Z., Khaniani, H., and , J. L. (2019). Data kit inversion and uncertainty analysis. Journal of Applied Geophysics, 161, 228–238.
[12] Efron, B., (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
[13] McLaughlin, K.L., (1988). Maximum-likelihood event magnitude estima- tion with bootstrapping for uncertainty estimation, Bull. seism. Soc. Am., 78(2), 855–862.
[14] Tichelaar, B.W. and Ruff, L.J., (1989). How good are our best models? Jack- knifing, bootstrapping, and earthquake depth, EOS, Trans. Am. geophys. Un., 55(12), 1613–1624.
[15] Shearer, P.M., (1997). Improving local earthquake locations using the l1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence, Journal of Geophysical Research, 102(B4), 8269–8283.
[16] Parsekian, A. D., and Grombacher, D. (2015). Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics. Journal of Applied Geophysics, 119, 61–70. https://doi.org/10.1016/
j.jappgeo.2015.05.005.
[17] Hertrich, M., (2008). Imaging of groundwater with nuclear magnetic resonance: Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 227–248.
[18] Schnaidt, S., and Heinson, G. (2015). Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling. Geophysical Journal International, 203(1), 92–106. https://doi.org/10.1093/gji/ggv264.
[19] Campanya, J., Ledo, J., Queralt, P., Marcuello, A. and Jones, A.G., (2014). A new methodology to estimate magnetotelluric (MT) tensor relationships: estimation of local transfer-functions by combining interstation transfer- functions (ELICIT), Geophysical Journal International, 198(1), 484–494.
[20] Neukirch, M. and Garcia, X., 2014. Nonstationary magneto-telluric data processing with instantaneous parameter, Journal of Geophysical Research, 119, 1634–1654.
[21] Ebtehaj, M., Moradkhani, H., and Gupta, H. V. (2010). Improving robust-ness of hydrologic parameter estimation by the use of moving block bootstrap resampling, Water Resources Res., 46, W07515,
[22] Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann.Statist. 17 1217–1261.
[23] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap (R. Lepage and L. Billard, eds.) 225–248. Wiley, New York.