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A B S T R A C T 

 

Due to non-uniqueness of geophysical inverse problems and measurement errors, the inversion uncertainties within the model parameters 
are one of the most significant necessities imposed on any modern inverse theory. Uncertainty analysis consists of finding equivalent models 
which sufficiently fit the observed data within the same error bound and are consistent with the prior information. In this paper, we present 
a non-parametric block-wise bootstrap resampling method called moving block bootstrapping (MBB) for uncertainty analysis of geophysical 
inverse solutions. In contrast to conventional bootstrap in which the dependence structure of data is ignored, the block bootstrap considers 
the dependency and correlation among the observed data by resampling not individual observations, but blocks of observations. The 
application of the proposed strategy to different synthetic inverse problems as well as to synthetic and real datasets of geo-electrical sounding 
inversion is presented. The results demonstrated that through the block bootstrap, it is possible to effectively sample the equivalence regions 
for a given error bound. 
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1. Introduction 

From deterministic and probabilistic points of views, the aim of 
geophysical inversion is to infer the subsurface physical properties from 
limited and noisy data. An integral portion of any parameter estimation 
is the model appraisal or uncertainty analysis of the inverse solution. 
The uncertainty has a statistical component associated with the data 
errors, and a deterministic component that accounts for the finite 
resolution that is attained in the model estimation as well as systematic 
errors in the problem. However, more reasons may exist for uncertainty 
in inversion results, such as linearization, incorrect assumptions (e.g., 
inappropriate starting model, isotropy, anisotropy, and homogeneity), 
and numerical approximation. Hence, it is essential to quantify the error 
between the estimated model parameters and the true model 
parameters. 

The uncertainty analysis (i.e., searching equivalent models) based on 
the deterministic inversion approaches are quite well understood in 
linear inverse problems [1-3]. However, these strategies are not often 
sufficient for non-linear inverse problems since linear inverse theory can 
only allow a local estimation of the equivalent region. The deterministic-
based uncertainty estimation methods depend upon the understanding 
of the topography of the objective function measuring the data misfit in 
linear and non-linear problems. An alternative strategy is to cast the 
problem in a stochastic framework using Bayesian inference [4], [5] and 
guided random search procedures, including genetic algorithm and 
simulated annealing [6-9]. Bayesian inference provides a systematic 
framework for incorporating data uncertainties, forward models, and a 
priori information to quantify uncertainty of the model parameters 
through sampling the posterior probability density function of each 
model parameter by means of sampling techniques, such as Markov 
Chain Monte Carlo methods.  However, the solution of inverse  

 
 
 
problems in the context of stochastic approaches is prevented, in 
practice, by the curse of dimensionality and by the high computational 
cost needed to solve the corresponding forward problems. Therefore, a 
question that arises here is how to have a reliable uncertainty analysis in 
a relatively computationally efficient deterministic framework. 
Uncertainty study of geophysical models has been the subject of many 
research in geophysical inverse modelling in the context of single and 
multi-solution methods. Uncertainty analysis based on a single solution 
can only reflect model uncertainty due to data noise, but will not 
account for the inherent solution non-uniqueness, while multi-solution 
methods provide a set of models which sufficiently fit the observed data, 
and consequently, result in statistical distributions of model parameters. 
Indeed, in forming single model solutions, one cannot fully exploit the 
information content of our geophysical data [10]. 

In this paper, we present a non-parametric block bootstrap 
resampling method to quantify linear and non-linear geophysical 
inverse solutions uncertainty. The strategy is based on creating a 
number of data realizations that generate ensembles of models that fit 
the data within a certain tolerance in the context of deterministic 
inversion. The main advantage of this strategy that determines a 
population of models together with information on how well each 
model explains the observed data is that this ensemble can be used to 
infer the statistical properties about the model. A further preference is 
that sampling the solution space through the bootstrap strategy does not 
require any particular complicated parameter tuning [11]. The idea of 
the standard bootstrap resampling was introduced by Efron as a strategy 
to estimate confidence intervals for model parameters [12]. The 
conventional bootstrap method assumes that data are independent and 
identically distributed. However, in some cases correlations between the 
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data can be observed, where the block bootstrap method partially 
maintains the underlying dependence structure and creates more 
realistic pseudo-samples. The bootstrap resampling algorithm has found 
numerous practical applications in the mathematical literature for 
statistical inference, such as estimating distribution functions, 
conducting hypothesis tests, and identifying models. Despite its proven 
effectiveness, it has been seldom applied for quantitatively assessing 
uncertainty intervals in geophysical models. For instance, McLaughlin 
showed that the bootstrap method can be applied to maximum-
likelihood magnitude estimation for computation of the seismic event 
magnitude uncertainty [13]. Tichelaar and Ruff [14] and Shearer [15] 
proposed an uncertainty estimation of the earthquake parameters using 
bootstrap resampling. Parsekian and Grombacher [16] and Hertrich 
[17] took advantage of the conventional bootstrap statistics for 
estimating uncertainty in the hydro-geophysical parameters (i.e., water 
content and relaxation time). Schnaidt and Heinson [18] utilized a 
bootstrap-based model appraisal approach in magneto-telluric 
modelling. Campanya et al. [19] and Neukirch and Garcia [20] applied 
the bootstrap resampling method to estimate Magneto-telluric transfer 
functions. In addition to geophysical applications, Ebtehaj et al. [21] 
developed a block bootstrap method for hydrological parameter 
estimation. 

This study is intended to deal with the functionality of a variant of 
block bootstrapping (i.e., moving block bootstrap) for assessing model 
parameter uncertainty in a known controlled situation using synthetic 
experiments and a practical situation through application to a 1D 
resistivity field data. In other words, the presented procedure is aimed 
at sampling the uncertainty space in linear and non-linear inverse 
modelling based on the framework of deterministic inversion of 
multiple data realizations. The moving block bootstrapping-based 
model appraisal, to the best of our knowledge, has never been applied 
in geophysical experiments. 

Following the introduction section, this paper continues with a brief 
description of the methodology in section 2, giving a basic knowledge 
of the block bootstrap procedure with emphasis on moving block 
bootstrapping. Section 3 deals with the capability of the proposed 
resampling method through synthetic and real experiments as our 
numerical experiments. Finally, this paper ends by a short concluding 
remark and summary. 

2. Methodology 

The conventional bootstrap method generates samples by resampling 
the observed data randomly with or without replacement assuming that 
the observations are independently and identically distributed, and then 
constructs the respective empirical distribution function. The 
mathematical symbols applied in the formulas are as follows. We use 
italics for scalar quantities, boldface lowercase letters for vectors, and 
boldface capital letters for matrices. Suppose 𝐝 = (𝑑1 … 𝑑𝑛)  to be a 
sequence of independent and identically distributed observations. A 
bootstrap realization 𝐝∗ = (𝑑1

∗𝑑2
∗ … 𝑑𝑛

∗ )  is generated by making 𝑛 
random draws with or without replacement from 𝒅  for each 
bootstrapped data set. The bootstrap resampling is repeated until a total 
of 𝑘  bootstrapped data sets are obtained 𝐃 = {𝐝1

∗  𝐝2
∗ … 𝐝𝑘

∗ } . However, 
the performance of the original bootstrap method can be affected by 
dependency and correlation of observations. A remedy to this problem 
is to use the block-wise bootstrap to enhance the accuracy of bootstrap 
resampling through dividing the data samples into multiple blocks, 
where the blocks may be made up of non-overlapping or overlapping 
subsets from the original observed data. In this paper, we follow the 
strategy of the overlapping blocks known as moving block 
bootstrapping (MBB) applied by [22, 23], to a large class of weakly 
dependent random observations. The details of the MBB resampling 
strategy is summarized by Algorithm 1, as adopted for geophysical 
applications. 

Note that an important concept in the generation of ensembles of 
models is the randomness in generation of each data realization that one 
employs, hence, the block length 𝜁  and the number of blocks ℓ  are 

randomly selected at each iteration of random data creation. As a result, 
the bootstrapping process, at each iteration, provides a variable number 
of the observed data, depending on the block length and the number of 
blocks. The MBB, as a model-free procedure represents a general non-
parametric approach that can be used when no distributional 
assumptions are available and so it shows a behavior close to the 
conventional bootstrap resampling. In addition, the edge effect of the 
MBB can be removed using a modification of the MBB method, that is, 
circular block bootstrap, where by wrapping the data around in a circle 
before blocking ensures that all observations have the same drawing 
probability. As was mentioned earlier, using the MBB procedure the 
uncertainty space is sampled in linear and non-linear inverse problems 
in implementing inversion of random subsamples (i.e., bootstrapped 
data sets) derived from Algorithm 1. In the context of mathematics, 
uncertainty analysis in discrete inverse problems consists of finding an 
ensemble of models that adequately fit the data 𝒅 ∈ ℝ𝑛×1 within the 
same error bounds 𝛿 and that are consistent with the prior information: 

 

‖𝐝 − 𝐊(𝐦)‖𝑙2
≤ 𝛿                                                                                  (1) 

 

Where 𝐊 ∈ ℝ𝑛×𝑚  is a linear or non-linear forward operator 
depending on whether the forward problem relies linearly or non-
linearly on the unknown parameters 𝐦 ∈ ℝ𝑚×1. Referring to Eq. 1, the 
uncertainty space is defined based on the regions that include the 
equivalent models satisfying the above condition for a given noise level. 
According to [24], the equivalent region in linear inverse problems is 
the portion of the model space inside the hyper-quadric surface of 
equivalence, whose axes are dependent on the noise level as well as on 
the ill-posedness of the forward matrix. This hyper-quadric surface is a 
very oblong ellipsoid and degenerates to an elliptical cylinder in the case 
of a rank-deficient forward matrix. In the case of non-linear problems, 
the valley has a croissant shape and can include different disconnected 
basins. They also showed that the geometry of the region of equivalence 
is affected by the noise level in both linear and non-linear inverse 
problems through shifting the solution found by optimization methods 
and deforming the topography of the cost function. To perform the 
uncertainty analysis, the original data set was resampled using the MBB 
algorithm to create different bootstrap realizations of the data. Then, all 
bootstrapped data realizations were inverted in the context of 
deterministic inversion using the same inversion parameters and the 
same initial models resulted in multiple solutions sufficiently fitting the 
resampled data. It should also be noted that the number of rows in the 
kernel or Jacobian matrix, respectively, for linear and non-linear 
problems must be the same size as the number of resampled 
observations at each iteration of the bootstrapping process to enable 
multiplication with the resampled data vector. Following the inversion 
of each data realization, we checked the condition presented in Eq. 1, if 
the criterion is met, the corresponding model can be taken into account 
as a member of equivalent models. 

 

Algorithm 1. Moving block bootstrap resampling algorithm 

Step 0. Given: noisy data 𝐝 ∈ ℝ𝑛×1 = (𝑑1  … 𝑑𝑛) , 𝜁𝑚𝑖𝑛  and 𝜁𝑚𝑎𝑥 , where 

𝜁𝑚𝑖𝑛 > 1 and 𝜁𝑚𝑎𝑥 < 𝑛. 

Step 1. Define the block length 𝜁 randomly in the range of (𝜁𝑚𝑖𝑛 𝜁𝑚𝑎𝑥). 

Step 2. Construct 𝜅 blocks with 𝜅 = 𝑛 − 𝜁 + 1 from 𝒅, where the 𝑖𝑡ℎ block Β𝑖 

with starting point 𝑑𝑖 consists of 𝜁 elements, i.e., Β𝑖 = (𝑑𝑖  𝑑𝑖+1 𝑑𝑖+2  … 𝑑𝑖+𝜁−1) 

with 1 ≤ 𝑖 ≤ 𝜅. 

Step 3. The 𝜅 overlapping blocks form a matrix with 𝜅 rows and 𝜁 columns  

𝐁∗ = (

𝑑1 ⋯ 𝑑1+𝜁−1

⋮ ⋱ ⋮
𝑑𝜅 ⋯ 𝑑𝜅+𝜁−1

)

𝜅×𝜁

. 

Step 4. Select randomly ℓ blocks (rows) without replacement from 𝐁∗. 

Step 5. Sort the ℓ blocks (rows) in the ascending order in terms of the number 

of each row, and then concatenate them together without the repeated samples 

to form the bootstrapped data 𝐝∗ ∈ ℝ(ℓ×𝜁)−𝑞, with 𝑞 being the length of the 

overlap. 

Step 1 to 5 is repeated to generate a variety of data realizations. 
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It is noted that similar to probabilistic approaches relying on 
sampling of a posteriori probability density function, the proposed 
method created multiple solutions with higher computational 
efficiency. Furthermore, we provided a posterior analysis using discrete 
cumulative density functions (see Appendix A) of the retrieved model 
parameters inferred from the entire bootstrapped data. The variability 
of the model parameters based on the upper and lower percentiles (i.e., 
the 1st quartile and the 3rd quartile, respectively) of the inverted models 
was presented to predict new data sampled and to detect the a posteriori 
probability distribution of the predicted target [11]. 

3. Numerical experiments 

Based on the proposed algorithm for finding the equivalent models 
that are sampled by the MBB resampling method in the previous 
section, in this section, we presented a set of experiments using synthetic 
and real case studies to illustrate the performance of our procedure. 
Note that the numerical examples merely include non-linear examples 
due to complexity of uncertainty analysis in non-linear inverse 
problems; however, the proposed strategy can be easily applied and 
extended to the case of linear problems. 

3.1. Synthetic example 

The first example consists of a non-linear inversion for the near-
surface application of gravity measurements along a profile, aiming at 
the retrieval of the depth to center 𝑧  and radius 𝑟  of a horizontal 
cylinder. The gravitational potential 𝑔𝑧(𝑟𝑧)  in the vertical direction 
resulting from an infinitely long cylinder stretched out into the plane, in 
the Cartesian coordinate system, can be given as: 

 

𝑔𝑧(𝑟𝑧) = 2𝜋Ρ∆𝜌(𝑟2𝑧 (𝑥𝑖
2 + 𝑧2)⁄ )  𝑖 = 1 …  100                                   (2) 

 

Where Ρ = 6.673e − 11 𝑚3𝑘𝑔−1𝑠−2  is the universal gravitational 
constant, and ∆𝜌  is the anomalous density. In this case ∆𝜌 =
−1500 𝑘𝑔𝑚−3, and the depth 𝑧 and the radius 𝑟 were set to 10 m and 5 
m, respectively. The synthetic gravity data were simulated along a profile 
with a length of 100 at a station interval of 1 m, then the generated data 
were contaminated with uncorrelated Gaussian noise with a standard 
deviation equal to 5% of the synthetic data mean. Fig. 1 indicates the 
non-linear region of equivalence for 300 resampled data using the 
moving block bootstrapping with the assumption that the anomalous 
density was known prior and thus the problem is to be solved for the 
unknown 𝑧 and 𝑟. It should be noted that the points depicted in Fig. 1 
are the results of inversion which fulfilled the criterion defined in Eq. 1. 
The optimization problem is non-linear and requires an iterative 
solution, for which a Gauss-Newton approach was used. We also showed 
the contour (red curve) of the equivalence region corresponding to the 
noise level added to the data. In addition, an approximate posterior 
analysis using discrete cumulative density functions of both the 
retrieved parameters inferred from the region of equivalence fulfilling 
the criterion defined in Eq. 1 is shown in Fig. 2. For the second example, 
we considered the inversion of a synthetic three-layered earth model 
with the geo-electrical parameters, including 𝜌1 = 100 Ω𝑚  𝜌2 =
150 Ω𝑚 𝜌3 = 200 Ω𝑚 ℎ1 = 20 𝑚 𝑎𝑛𝑑 ℎ2 = 10 𝑚 . To create the 
synthetic data, a Schlumberger configuration with 25 AB/2 spreads 
ranging from 1.25 to 1000 m was conducted. We assumed that the 
resistivity and thickness of the second layer and the resistivity of the 
third layer were known prior; thus, the problem was to be solved for the 
unknown 𝜌1 and ℎ1. The forward response of the assumed parameters 
was contaminated with uncorrelated Gaussian noise with a standard 
deviation equal to 5% of the synthetic data mean. Appendix B provides 
details of the theoretical formulation of the 1D resistivity forward 
problem for the input parameters (i.e., resistivity and thickness of each 
layer). In this case, we built an ensemble of resampled data, including 
300 bootstrapped data realizations with a variable number of samples. 
The inversion of the entire bootstrapped data was implemented with the 
same starting models and the same starting parameters, to then assess 
the differences and similarities between the bootstrap models, which are 
indicators of model uncertainty. 

The contour plots of the non-linear misfit function are displayed in 
Fig. 3 along with the equivalent models surrounded by the region of 
equivalence (black curve). Likewise, Fig. 4 shows the probability 
distribution of the model parameters in the region of equivalence 
defined based on the additive noise level. 

The third example used a synthetic earth model, including a five-layer 
earth with a shallow and deep unconfined aquifer which were separated 
by a low resistive layer acting as an aquiclude basement to the shallow 
aquifer. The geo-electrical parameters used to simulate the forward 
response of the third experiment consist of 𝜌1 = 4 Ω𝑚 𝜌2 = 5 Ω𝑚𝜌3 =
5 Ω𝑚𝜌4 = 7 Ω𝑚𝜌5 = 5 Ω𝑚; ℎ1 = 2 𝑚ℎ2 = 10 𝑚ℎ3 = 10 𝑚 −
𝑎𝑛𝑑 ℎ4 = 10 𝑚 with a homogenous half-space with infinite thickness. 
To create the synthetic data, a Schlumberger configuration with 15 AB/2 
spreads ranging from 1.25 to 1000 m was conducted. The synthetic data 
were corrupted by uncorrelated Gaussian noise with a standard 
deviation equal to 3% of the synthetic data mean. The MBB algorithm 
was implemented to select 300 bootstrap replicated from the data set. 
As outlined earlier, the bootstrap replicates include fewer observations 
than the original data, so that using partial data information introduced 
ambiguity in the inversion results, made it possible sampling the 
equivalent model domain efficiently [11]. Two strategies for solving the 
geo-electrical sounding inverse problem were commonly used in terms 
of the layer boundaries. These methods were defined based on models 
with variant and invariant geometry. 

 

 
Fig. 1. The contour plot of the non-linear misfit function associated with the first 
synthetic experiment indicating the non-linear equivalence region (red curve) 
corresponding to the noise level added to the data and the results of non-linear 
inversion of the bootstrapped data sets surrounded by the equivalence domain 
fulfilling the criterion defined in Eq 1. 

 

 
 

Fig. 2. Approximate posterior analysis of the sampled model parameters, including 
radius and depth inferred from the equivalent models shown in Fig. 1 using 
discrete cumulative density functions. The dashed blue and green lines indicate 
the true and mean values of the model parameters, respectively. 
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Fig. 3. The contour plot of the non-linear misfit function associated with the second 
synthetic experiment indicating the non-linear equivalence region (red curve) 
corresponding to the noise level added to the data and the results of non-linear 
inversion of the bootstrapped data sets surrounded by the equivalence domain 
fulfilling the criterion defined in Eq. 1. 

 

 
Fig. 4. Approximate posterior analysis of the sampled model parameters, including 
ρ and h inferred from the equivalent domain shown in Fig. 3 using discrete 
cumulative density functions. The dashed blue and green lines indicate the true 
and mean values of the model parameters, respectively. 

 
Regarding variant geometry inversion, the models are divided into a 

few layers with variable boundaries where both the values of the 
resistivity and thickness in each layer are allowed to vary. The invariant 
geometry inversion is based on the assumption that the Earth is divided 
into many layers with fixed boundaries so that only the resistivity in 
each layer is allowed to vary. For the variant geometry point of view, an 
over-determined problem should be solved leading to a more stable 
solution, but the number of geo-electrical layer remains an additional 
unknown in the geo-electrical sounding invers problem. In other words, 
in spite of further stability of the inversion process due to a lower 
number of parameters than the observed data, the geo-electrical 
sounding problem is still challenging owing to its ill-posed character 
(i.e., equivalence problems). Aside from the role of noise, the major 
reason for the ill-posedness of the geo-electrical sounding inversion is 
the lack of an appropriate spatial coverage of the field measurements. 
All bootstrap data sets are inverted in the context of variant geometry 
strategy with the same initial models. According to Eq. 1, solutions that 
fulfill the condition are regarded as equivalent models. Fig. 5 indicates 
the resulting models sampled in the equivalence region for a given error 
level and the median model (red), and the lower and upper bounds 
using the first and third quartiles of the model parameters. In addition 
to a visual comparison of the geo-electrical profiles uncertainty, 
histograms of the recovered parameters depicting the range of the 
model parameters variations are shown in Fig. 6. 

The last synthetic example consists of the inversion of 
electromagnetic induction (EMI) loop-loop data for 1D imaging of 
subsurface soil electrical conductivity. The forward EMI response for a 
given layered earth model is represented in Appendix C. The subsurface 
electrical conductivity model consists of a four-layer Earth with the 
geoelectrical parameters, including 𝜎1 = 250 ms. m−1 𝜎2 =
50 ms. m−1 𝜎3 = 100 ms. m−1 𝜎4 = 20 ms. m−1ℎ1 = 1.14 m ℎ2 =
2.07 m 𝑎𝑛𝑑 ℎ3 = 2.2 m. Data simulation was operated using two circle 
loops (coplanar) as receiver and transmitter at the distance of 5 m in the 
horizontal and vertical dipole orientations for 16 heights ranging from 0 
to 3 m above the surface. To bring the synthetic EMI data closer to field 
conditions, Gaussian additive noise with standard deviation equal to 5% 
of the magnitude of observations' mean was added to give the data set 
to be inverted. The four-layered Earth model for which the data were 
generated is shown by the blue line in Fig. 7. The synthetic data set was 
inverted using multi-layer inversion modelling algorithm where the 
subsurface model was discretized into many layers of logarithmically 
increasing thickness with uniform conductivity resulting in a smooth 
inversion. This strategy is often referred to as Occam’s inversion [25], 
and in contrast to the blocky inversion (i.e., Levenberg-Marquardt 
algorithm), it includes a larger model space. We followed the strategy 
described for the previous synthetic experiments to create 300 replicates 
of the original data set. Fig.7 displays the distribution of the estimated 
conductivity profiles (light green lines) sampled in the equivalence 
region with respect to the additive noise level each with the same initial 
inversion parameters. Furthermore, the median model (green line), and 
the lower and upper bounds (red line) derived from the first and third 
quartiles of the inverted profiles are depicted in Fig. 7. 

 

 
Fig. 5. Synthetic geoelectrical sounding inversion. The resulting models sampled 
(light green) in the equivalence region for a given error level and the median 
model (green) as well as the lower and the upper bounds (red) using the first and 
third quartiles of the model parameters, and the inverted model of unbootstrapped 
data (black). 
 

3.2. Real example 

As a real field example, we refer in this subsection to a real geo-
electrical sounding non-linear inverse problem with the purpose of 
detecting hydrogeological conditions. The resistivity sounding data 
were acquired at the rural district of Shahid Abad in Alborz province, 
Northwest Iran through the Schlumberger array consisting of 23 
apparent resistivity records with current electrode spacing ranging from 
3  to 47 m . At this site, the borehole data and soil classification 
confirmed a vadose zone with a thickness of 3 m, followed by a fresh 
water-bearing layer composed of fine sand and clayey sand until a depth 
of 10 𝑚, underlined by a 9 𝑚 mudstone followed by mudstone mixed 
with siltstone layer until the bottom of the borehole. Estimate of data 
error level is a significant factor in non-linear inversion of geophysical 
data, since the point at which convergence is met and also the amount 
of damping enforced on the data are all influenced by the level of 
measurement errors. Wrongly characterizing measurement errors can 



 A. Rahmati Shad et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 59-1 (2025) 61-6791-199 65 

 

bring about over- or under-interpreted structures during inversion 
process. In an electrical resistivity survey, the procedure of reciprocal 
resistance measurements was used to provide us with a rough estimation 
of the noise level in the observed data. The proposed bootstrap 
resampling, which is well adopted for geophysical applications, was 
implemented on the original data to generate a set of bootstrap 
replicates. The block bootstrap estimates were calculated by defining the 
block length 𝜁 randomly in the range of (𝜁𝑚𝑖𝑛 = 4 𝜁𝑚𝑎𝑥 = 10), and then 
randomly selecting ℓ = 3 blocks (rows) without replacement from the 
matrix 𝐁∗. The resampling process was repeated to create 200 bootstrap 
representations of the original data. All bootstrapped data realizations 
were inverted using a regularized Levenberg–Marquardt in the context 
of variant geometry inversion (i.e., block discretization). The starting 
parameters for each bootstrapped data have to be identical to make 
them comparable and the uncertainty analysis will to some degree be 
dependent upon the selection of starting parameters. To control the 
balance between residual and stabilization terms, the regularization 
parameter decayed at each iteration of the inversion. In other words, the 
inversion process began with an adequately large value of the 
regularization parameter ensuring stronger stability. Then the 
regularization parameter was continuously reduced by a fixed factor 
until the convergence criteria were met, where the chi-squared value 
( 𝜒2 = 𝑚−1 2⁄ ‖𝐖𝒅(𝐝 − 𝐊(𝐦))‖𝑙2

, where 𝐖𝒅  is the diagonal matrix 
which includes the noise level in each datum) moved close to one. In 
addition to the 𝜒2 criteria, we also considered a convergence test based 
on the gradient of 𝐊(𝐦) . To ensure that the gradient of 𝐊(𝐦)  was 
approximately zero, assuming that the values of 𝐊(𝐦)  could be 
calculated with an accuracy of 𝜀, it was required that [26]. 

 

‖∇𝐊(𝐦𝑘)‖𝑙2
≤ √𝜀(1 + |𝐊(𝐦𝑘)|)                                                         (3) 

 

The uncertainty analysis, including the equivalent models (light 
green lines) based on the solutions of the resampled data sets along with 
the median model (green line), and the lower and upper bounds (red 
lines) using the first and third quartiles of the model parameters is 
shown in Fig. 8. From this, we saw variable uncertainty in the resistivity 
profile with depth. The black solid line represents in the inversion of the 
original data. It is also observed that the median model obtained from 
the suite of models resolved the aquifer structure and was relatively 
compatible with the results from the original data. However, there was 
a slight difference in the resistivity values of the layers. Furthermore, the 
histograms of the inverted geoelectric parameters (i.e., resistivities and 
thicknesses) derived from the equivalent geoelectrical profiles shown in 
Fig. 8 are represented in Fig. 9. 

 
 

 
Fig. 6. Approximate posterior analysis of the sampled geoelectrical parameters 
inferred from the equivalent models shown in Fig. 5 using discrete cumulative 
density functions. The dashed blue and green lines indicate the true and mean 
values of the model parameters, respectively. 

 
Fig. 7. Synthetic electromagnetic induction inversion. The resulting models 
sampled (light green) in the equivalence region for a given error level and the 
median model (green) as well as the lower and the upper bounds (red) using the 
first and third quartiles of the model parameters, and the inverted model of 
unbootstrapped data (black). 

 

 
 

Fig. 8. Real geoelectrical sounding data inversion. a) The resulting models sampled 
(light green) in the equivalence region for a given error level estimated using the 
procedure of reciprocal resistance measurements and the median model (green), 
and the lower and upper bounds (red) using the first and third quartiles of the 
model parameters. b) Unbootstrapped field data (black circles) and the fitted 
model response (red line). c) Information on/about a borehole lithology in the 
vicinity of the survey. 

 

4.  Conclusions 

The MBB method was developed and adapted as a non-parametric 
tool for uncertainty quantification of geophysical inverse solutions in 
the context of linear and non-linear problems. The MBB is an 
overlapping variant of the block bootstrap resampling method that can 
surmount the limitations of the conventional bootstrap procedure and 
can generally be used with any available inversion algorithm. 
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Fig. 9. Approximate posterior analysis of the sampled geoelectrical parameters 
inferred from the equivalent models shown in Fig. 8 using discrete cumulative 
density functions. 

 
The strength of the proposed method is that it is easy to implement 

and accelerates the model space search for uncertainty purposes. In 
contrast to Bayesian-based model appraisal approaches (e.g., Markov 
Chain Monte Carlo methods) relying on the highly time- consuming 
process of sampling of a posteriori probability density function, the 
proposed method creates multiple solutions with higher computational 
efficiency, in particular, for large-scale inverse problems. Besides, the 
proposed method not only provides model uncertainty owing to the 
presence of noise but also accounts for the inherent solution non-
uniqueness. We numerically show the efficiency of the presented 
technique through its application to different non-linear synthetic 
experiments in gravimetric, loop-loop electromagnetic induction, and 
geoelectrical sounding inversion, and to the inversion of a real 
geoelectrical sounding data set. The numerical results demonstrated the 
satisfactory application of the algorithm in sampling the different 
models of the equivalent region leading to a quantitative evaluation of 
the reliability of the inverse problem solutions. This applicable and 
straightforward model appraisal strategy can be extended to geophysical 
imaging applications and the joint inversion of multi-physics data sets. 

Appendix A: Discrete cumulative density function 

Give a discrete random variable 𝑀 , and its probability density 
function Pr(𝑀 = 𝑚) = 𝑓(𝑚), the discreet cumulative density function 
is defined as: 

 

𝐹(𝑚) = Pr (𝑀 ≤ ℓ)                                                                               (A1) 
 

Pr(𝑀 ≤ 𝑚) = ∑ [Pr (𝑀 = 𝑘)]𝑚
𝑘=𝑚𝑚𝑖𝑛

                                                 (A2) 
 

The cumulative density function 𝐹(𝑚): ℝ → [0 1]  describes the 
probability that the random variable 𝑀 with the probability distribution 
𝑓(𝑚),  will be found at a value less than or equal to 𝑚. 

Appendix B:  1D resistivity forward modelling 

The forward response of DC resistivity sounding on the surface of a 
horizontally stratified Earth acquired using Schlumberger configuration 
is written as [27]: 

 

𝜌𝑎
𝑠 = 𝜌1[1 + 2𝜔2 ∫ 𝐺(𝜆)𝐽1(𝜆𝜔)𝜆𝑑𝜆

∞

0
]                                                   (B1) 

 

Where 𝜌1 is the resistivity of the first layer, 𝜔 is the electrode spacing, 
𝐺(𝜆) indicates the kernel function depending on the integration variable 
𝜆 = 1

𝜔⁄  as well as the values of resistivity (𝜌 (Ω ∙ 𝑚)) and thickness (ℎ 
(m)) of all the layers and of the resistivity of the infinite substratum, and 
, 𝐽1 is the first order Bessel function of the first kind. 

By replacing the resistivity transform function 𝑇(𝜆)(Ω ∙ m) = 𝜌1[1 +
2𝐺(𝜆)] , which is calculated using the recurrence relationships from 
bottom to surface: 

 

𝑇𝑖(𝜆) = [𝑇𝑖+1(𝜆) + 𝜌𝑖𝑡𝑎𝑛ℎ(𝜆ℎ𝑖)] [1 + 𝑇𝑖+1(𝜆) 𝑡𝑎𝑛ℎ(𝜆ℎ𝑖) 𝜌𝑖⁄ ]⁄       (B2) 
 

𝑖 = [𝑀 − 1 …  1]                                                                                  (B3) 
 

into Eq. (B-1), we derived: 
 

𝜌𝑎
𝑠(𝜔) = 𝜔2[∫ 𝑇(𝜆)𝐽1(𝜆𝜔)𝜆𝑑𝜆

∞

0
]                                                       (B4) 

 

Where 𝑀 stands for the number of layers. The apparent resistivity 
values were derived from computing integral Eq. (B-3) through the 
application of the Ghosh’s filter [27]. 

Appendix C: 1D electromagnetic forward response of a 
multi-layered earth 

Forward response of electromagnetic induction for a horizontally 
stratified Earth acquired using vertical and horizontal dipole coil 
configurations is presented by the [28], which is created by the 
commutative electrical conductivity distribution over a certain depth 
range, and valid under condition of low induction number (i.e., the ratio 
of the coil separation divided by the plane-wave EM skin depth to be 
much less than unity), is given by: 

 

(𝜎𝑎)𝐻 = (
−4𝑟

𝜔𝜇0
)𝐼𝑚[∫ 𝑞0𝐽0(𝜆𝑟)𝜆2𝑑𝜆

∞

0
]                                                    (C1) 

 

(𝜎𝑎)𝑉 = (
−4𝑟

𝜔𝜇0
)𝐼𝑚[∫ 𝑞0𝐽1(𝜆𝑟)𝜆2𝑑𝜆

∞

0
]                                                  (C2) 

 

Where (𝜎𝑎)𝐻  and (𝜎𝑎)𝑉  stands for the apparent electrical 
conductivity measured in horizontal and vertical dipole coil 
configurations, respectively, r is the spacing between the coils, 𝐽0 and 𝐽1 
represent the zero-order and first-order Bessel functions, 𝜇0 is the free 
space permeability, 𝜔  indicates the angular frequency, 𝜆  is the radial 
wave number, and ℎ𝑐 is the height of the coils above the Earth surface, 
as well as 𝑞0 corresponds to the reflection factor which was calculated 
recursively through discretizing the subsurface model into 𝑁 layers with 
fixed boundaries as follows: 

 
 
                                                                                                          (C3) 
 
 
Where Σ𝑛 = (𝜆𝑛 + 𝜔𝜇0𝑗𝜎𝑛)1/2 
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