[1] Castagna, J.P., Batzle, M.L., Eastwood, R.L., (1985). Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50 (4), 571–581.
[2] Eskandari, H., Rezaee, M.R., Mohammadnia, M., (2004). Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir, South Iran. Can. Soc. Explor. Geophys. (CSEG) Rec. 29, 42–48.
[3] Coello, C.C., (2007). Evolutionary algorithms for solving multiobjective problems: Springer Science & Business Media. https:// link.springer.com/book/10.1007%2F978-0-387-36797-2.
[4] Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Network. 5 (2), 157–166.
[5] Krizhevsky, A., Sutskever, I., E. Hinton, G. (2017). ImageNet classification with deep convolutional neural networks. Commun ACM 60:84–90. https://doi. org/10.1145/3065386.
[6] Kacprzyk. J., (2008). Studies in Computational Intelligence, Volume 121.
[7] He. K, X. Zhang, S. Ren, and J. Sun. (2016). Deep residual learning for image recognition, Paper read at Proceedings of the IEEE conference on computer vision and pattern recognition.
[8] Rezaee, MR., Kadkhodaei, A., Barabadi, A. (2007). Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. J Petrol Sci Eng 55:201–212.
https://doi.org/10.1016/j.petrol.2006.08.008.
[9] Rajabi, M., Bohloli, B., Hangar, E. (2010). Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Comput Geosci 36:647–664.
https://doi.org/10.1016/
j.cageo.2009.09.008.
[10] Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., & Rajoli, M. (2011). Prediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf. Geopersia, 1(1), 1-17.
[11] Asoodeh, M., Bagheripour, P. (2012). Prediction of compressional, shear, and stonely wave velocities from conventional well log data using a committee machine with intelligent systems. Rock mechanics and rock engineering 45, 45–63. https://doi.org/10. 1007/s00603-011-0181-2.
[12] Asoodeh, M., Bagheripour, P. (2013). Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm pattern search technique. Open Geosciences 5, 272–284. https:// doi.org/10.2478/s13533-012-0129-4.
[13] Asoodeh, M., Bagheripour, P. (2014). ACE stimulated neural network for shear wave velocity determination from well logs. J Apply Geophysics 107:102–107. https://doi.org/10.1016/
j.jappgeo.2014. 05.014.
[14] Maleki, Sh., Moradzadeh, A., Ghavami Riabi, R., Gholami, R., Sadeghzadeh, F. (2014). Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG J Astron Geophys 3:70–81. https://doi.org/10.1016/
j.nrjag.2014.05.001.
[15] Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J. (2014). Shear wave velocity prediction using seismic attributes and well log data. Acta Geophysica 62, 818–848. https://doi.org/10.2478/
s11600-013-0200-7.
[16] Akhundi, H., Ghafoori, M., Lashkaripour, G.R. (2014). Prediction of shear wave velocityusing artificial neural network technique, multiple regression and petrophysical data:a case study in asmari reservoir (SW Iran). Open J. Geol. 4, 303–313.
[17] Kadkhodaie-Ilkhchi., A. (2015). A systematic approach for estimation of reservoir rock properties using Ant Colony Optimization. Geopersia, 5(1), 7-17.
[18] Bagheripour., P., Gholami., A., Asoodeh., M., & Vaezzadeh-Asadi., M. (2015). Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering, 125, 95-99.
[19] Al-Dousari, M., Garrouch, A.A., Al-Omair, O. (2016). Investigating the dependence of shear wave velocity on petrophysical parameters. J. Petrol. Sci. Eng. 146, 286–296.
[20] Singh, S., Kanli, A.I. (2016). Estimating shear wave velocities in oil fields: a neural network approach. Geosciences Journal 20, 221–228. https:// link.springer.com/article/10.1007%2Fs12303-015-0036-z.
[22] Shiroodi, SK., Ghafoori, M., Ansari, H. R., Lashkaripour, G., Ghanadian, M. (2017). Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran. J Afr Earth Sc 126:123–135. https://doi.org/10.1016/
j.jafrearsci.2016.11.016.
[23] Mehrgini, B., Izadi, H., Memarian, H. (2019). Shear wave velocity prediction using Elman artificial neural network. Carbonates Evaporites 34 (4), 1281–1291.
[24] Alkinani, H.H., AL hamidi, S., Dunn norman, R. E., Flori, M. A., AL Alwani, A. R. (2019). Intelligent data-driven analytics to predict shear wave velocity in carbonate formations: comparison between recurrent and conventional neural networks. OnePetro.
https://onepetro.org/conference-paper/ARMA-2019-0511.
[25] Zhang, Y., Zhong, H. R., Wu, Z., Zhou, H., Ma, Q. (2020). Improvement of petrophysical workflow for shear wave velocity prediction based on machine learning methods for complex carbonate reservoirs. J Petrol Sci Eng 192:107234. https://doi.org/10.1016/j.petrol.2020.107234.
[26] Wood, DA. (2020). Bakken stratigraphic and type well log learning network exploited to predict and data mine shear wave acoustic velocity. J Appl Geophys 173:103936. https://doi.org/10.1016/j. jappgeo.2019.103936.
[27] Gholami, A., Seyedali, S M., Ansari, H. R. (2020). Estimation of shear wave velocity from post-stack seismic data through committee machine with cuckoo search optimized intelligence models. J Petrol Sci Eng 189:106939. https://doi.org/
10.1016/j.petrol.2020.106939.
[28] Wang, J., Cao, J., Liu, Z., Lei, X., Zhou, X. (2020). Method of well logging prediction prior to well drilling based onlong short-term memory recurrent neural network[J]. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 47 (2), 227–236.
[29] Ghorbani, H., Davoodi, S., Davarpanah, A. (2021). Accurate determination of shear wave velocity using LSSVM-GA algorithm based on petrophysical log, 1 ed. European Association of Geoscientists & Engineers, pp. 1–3. https://doi.org/10.3997/2214-4609.202137015.
[31] Ebrahimi, A., Izadpanahi, A., Ebrahimi, P., Ranjbar, A., (2022). Estimation of shear wave velocity in an Iranian oil reservoir using machine learning methods. J Petrol Sci Eng 209:109841.
https://doi.org/10.1016/j.petrol.2021.109841.
[32] Gholami Vijouyeh, A., Kadkhodaie, A., Hassanpour Sedghi, M., (2022). A committee machine with intelligent experts (CMIE) for estimation of fast and slow shear wave velocities utilizing petrophysical logs. Computers & Geosciences. Volume 165, August 2022, 105149.
https://doi.org/10.1016/j.cageo.2022.105149.
[33] Nasrnia, B., Falahat, R., Kadkhodaie, A., Gholami Vijouyeh, A., (2023). A committee machine-based estimation of shear velocity log by combining intelligent systems and rock-physics model using metaheuristic algorithms. Volume 126, Part A, November 2023, 106821.
https://doi.org/10.1016/
j.engappai.2023.106821.
[34] Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A., (2010). Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks.
[35] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9 (8), 1735–1780.
[36] Gers, F.A., Schraudolph, N.N., Schmidhuber, J. (2003). Learning precise timing with lstm recurrent networks. J. Mach. Learn. Res. 3 (1), 115–143.
[37] Biranvand, N., Kikhai, M., Roein. (2019). presenting a method in the field of revealing targets in satellite images using deep learning and with remote sensing and GIS approach, Geographical
[38] Abad, B., Rajabi, A., Mousavi, S. M. V., Mohamadian, N., Wood, D., Ghorbani, H., Davoodi, Sh., Alvar, M., Shahbazi, Kh., 2021b. Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs. Journal of Natural Gas Science and Engineering 95,104210. https://doi.org/10.1016/j.jngse.2021.104210.
[39] Sezavar, A., Fersi, H., Mohamadzadeh, S. (2015). Image retrieval using deep learning. 4th International Conference on Applied Research in Computer Engineering and Signal Processing. Vol.3, No. 1, 28-42.
[40] Anemangely, M., Ramezanzadeh, A., Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield. J. Nat. Gas Sci. Eng. 38, 373–387.
[41] Kingma, D.P., Ba, J. (2014). Adam: A Method for Stochastic Optimization. https://arxiv. org/abs/1412.6980.
[42] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. J.Machine Learning Research. 12 (Jul), 2121–2159.
[43] Tieleman, T., Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4, 26–30.