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A B S T R A C T 

 

Shear wave velocity (Vs) is one of the most critical parameters for determining geomechanical properties to predict reservoir behavior. 
Determining shear wave velocity (Vs) through methods, such as core analysis requires a significant amount of time and cost. Additionally, 
due to the scarcity of core samples and the heterogeneity of reservoir rocks, determining this parameter using conventional methods is often 
not very accurate. While many empirical methods have been developed for estimating Vs, their applicability across different regions is often 
limited. Therefore, estimating Vs using conventional well logs is crucial. An efficient method for predicting Vs is the use of intelligent 
algorithms, which offer low-cost and accurate predictions. It is feasible to predict Vs using well log data. In this study, Vs was predicted using 
empirical relations and some deep learning (DL) algorithms in one of the hydrocarbon fields in southern Iran. In order to use the DL methods, 
the autoencoders deep network was used to select the effective features in predicting the Vs, and then, with multi-layer perceptron (MLP), 
long-short term memory (LSTM), convolutional neural network (CNN), and convolutional neural network + long-short term memory 
(CNN+LSTM) networks, Vs was predicted. The performance of these models was tested by a blind data set that the models had not seen 
before. Furthermore, the results were checked and evaluated by set of statistical measures, including MAE, MAPE, MSE, RMSE, NRMSE, and 
R2 values calculated for train, test, and blind datasets. It was found that all four deep learning models used in this study well performed 
effectively for Vs prediction, but the combined CNN+LSTM model results indicated that the least root mean squared error (RMSE) was equal 
to 0.0243 (2.43%) and the best coefficient of determination (R2) equal to 0.9993 for blind dataset. We found that Vs can be predicted from a 
series of well log data by considering their variation trends and context information with depth by means of DL algorithms. This approach is 
particularly suitable for problems involving various series data, such as Vs prediction. By comparing the results obtained from DL algorithms 
with those from conventional empirical methods and processing real petrophysical well log data, it can be concluded that deep learning 
algorithms not only offer more predictive accuracy and robustness but also hold promising use prospects in Vs prediction studies. The results 
showed that the used CNN and CNN+LSTM networks, as new deep learning algorithms, are able to predict Vs adequately. 
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1. Introduction 

One of the most important sources of information for determining 
the properties of rocks in subsurface formations are well log data. The 
velocity of seismic waves along with other petrophysical information is 
a suitable tool to determine the properties of rocks and underground 
fluids. Vs is a key parameter in geophysical and geomechanical studies 
and provides valuable information for determining pore pressure, type 
of fluids in pores and determining mechanical properties of reservoir 
rocks. Vs is measured with DSI tools or laboratory measurements. In 
many wells, especially old wells, DSI tools are not used due to their high 
cost. Additionally, laboratory testing of cores is laborious and expensive 
and since the number of cores in wells is limited and discontinuous, it 
cannot express the properties of underground rocks accurately. 
Therefore, it would be ideal to use a method that can continuously 
predict Vs for a well in a short period of time and lower cost. Many 
methods have been introduced to predict the Vs that use petrophysical 
logs. One of these methods is empirical relations, the most important of 
which are the relations of Castagna et al. [1], Eskandari et al [2] and 
Coello [3]. Common empirical relations are presented in Table 1. 

One of the efficient methods for predicting Vs is the use of intelligent  

 
 
 
methods. DL is a subset of machine learning (ML) that allows 
computers to tackle complex problems by employing neural networks 
with an increased numbers of neurons, layers, and interconnected 
nodes. DL is the knowledge that should be given to the computer so that 
it can interact with its environment based on a series of rules. Benigo [4] 
believes that deep learning makes the computer learn abstract concepts. 
The basis of deep learning is that computers, like humans, have a 
different understanding of concepts and have the power to generalize. 
The general classification of DL is as follows [5]: supervised learning, 
unsupervised learning and hybrid learning networks. 

In supervised learning, the categories of data are known from the 
beginning, and each training data is assigned to a specific category. In 
other words, during training, information in addition to the training 
data (the same as the title of each category from which the title of the 
supervisor) is provided to the learner. But in unsupervised learning, no 
information except the educational data is available to the learner, and 
it is the learner who must look for a specific structure in the data [6]. 
DL algorithms are a subset of ML algorithms designed to uncover 
multiple levels of distributed representations within input data [7]. 
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Most modern DL models utilize artificial neural networks (ANNs), 
though they may incorporate propositional formulations or organized 
layers of hidden variables in generative models such as nodes in deep 
belief networks and deep Boltzmann machines. In DL, each level learns 
to transform its input data into a progressively more abstract and 
composite representation. Crucially, DL processes autonomously 
determine the optimal features to place at each level. 

 
Table 1. Common experimental formulas used to predict Vs. 

References Equations 

Castagna et al., 1985 𝑉𝑠 = 1.0168𝑉𝑝 − 0.05509𝑉𝑝
2 − 1.0305 

Eskandari et al., 2004 𝑉𝑠 = 1.612𝑉𝑝 − 0.1236𝑉𝑝
2 − 2.0357 

Coello, 2007 𝑉𝑠 = 1.09913326𝑉𝑝
0.9238115636 

 
In recent years, the use of intelligent methods in predicting oil 

engineering problems has increased significantly. Eskandari et al. [2] 
employed multiple regression and ANNs to estimate Vs. Rezaei et al. [8] 
predicted Vs using fuzzy logic, ANNs, and adaptive neuro-fuzzy 
inference systems. Rajabi et al. [9] used intelligent methods to predict 
the Vs and Stoneley waves based on well log data. Motazadian et al. [10] 
used a genetic algorithm to predict Vs and compression wave velocity 
(Vp). Asoudeh and Bagheripour [11; 12; 13] used ANNs, fuzzy logic and 
neuro-fuzzy to predict Vs. Maklay et al. [14] used the combination of 
support vector regression and neural networks to predict Vs. Gholami 
et al. [15] predicted Vs using MLP. Akhondi et al. [16] predicted Vs using 
ANN. Kadkhodaei [17] used the ant colony optimization algorithm to 
estimate the Vs. Bagheripour et al. [18] used support vector regression 
to predict Vs. Al-Dossari et al. [19] estimated Vs using generalized 
reduced gradient. Singh and Kanli [20] predicted Vs using feedforward 
ANNs. Behnia et al. [21] estimated Vs with Gene expression 
programming and adaptive neuro-fuzzy inference. Shiroudi et al. [22] 
estimated Vs with committee fuzzy machine, surgeon’s fuzzy inference, 
adaptive neuro-fuzzy inference and optimized fuzzy inference. 
Mehrghini et al. [23] estimated Vs with multi-layer perceptron and 
Elman neural network. Alkinani et al. [24] estimated Vs with nonlinear 
autoregressive network with exogenous inputs network. Zhang et al. 
[25] estimated Vs with long short-term memory (LSTM). Wood et al. 
[26] predicted Vs with the transparent open box learning network. 
Gholami et al. [27] predicted Vs with optimized fuzzy inference, 
optimized neural network, optimized support vector regression and 
committee machine. Wang et al. [28] estimated Vs with particle swarm 
optimization- long short-term memory, long short-term memory, 
recurrent neural network). Ghorbani et al. [29] predicted Vs with Least-
squares support-vector machines-genetic algorithm. Olayiwola and 
Sanuade [30] estimated Vs with ANN, Least-squares support-vector 
machines and adaptive neuro-fuzzy inference. Ebrahimi et al [31] 
estimated Vs using three different ML methods named as: MLP- ANN, 
adaptive neuro-fuzzy inference system and multi-gene genetic 
programming. Gholami et al [32] using ANNs, fuzzy logic, and neuro-
fuzzy estimated Vs. Nasrnia et al [33] used intelligent methods, 
including neural network, fuzzy logic, and an adaptive neuro-fuzzy 
inference system. 

Given the significant importance of Vs in geomechanical and 
petrophysical modeling, and the high cost of log DSI, a method that can 
predict Vs with high accuracy is crucial. One of the methods used is 
intelligence methods. According to previous researche, many methods 
have been developed to estimate Vs, but because accurate estimation of 
these parameters is very important for modeling and geomechanical 
studies, this paper has introduced algorithms for estimating Vs using DL 
algorithms and well log data with high accuracy and low cost. On this 
basis, four DL algorithms are used to predict Vs (multilayer perceptron 
network, transformed convolutional neural network, recurrent neural 
network (RNN) and convolutional neural network + RNN). The aim 
was to establish a model capable of estimating Vs based on conventional 
petrophysical logs. For this study, a dataset was selected from a vertical 
well in a hydrocarbon field located in southern Iran. To reach the goal, 
the auto-encoders deep network was first used to select the effective 
features. The selected logs were then used as input parameters for the 

model to predict Vs. Subsequently, using the designed MLP, LSTM, 
CNN, and CNN+LSTM deep learning algorithms the values of Vs was 
predicted and compared with those obtained by empirical models. 

2. Material and methods 

2.1. Methods 

2.1.1. Multilayer perceptron neural network 

Multi-layer perceptron ANNs are a type of feedforward neural 
network capable of making accurate estimates by appropriately 
selecting the number of layers and neurons. In this type of network, the 
adjustable parameters are the weights of connections between layers. 
The training process aimed to find the optimal values for these weights, 
which enable effective communication between neurons within the 
network. The most common learning algorithm for this feedforward 
network is the backpropagation algorithm. This type of network 
typically consists of three layers: the input layer, hidden layers, and the 
output layer. In feedforward networks, neurons are arranged in layers 
that start at the first (input) layer. In a neural network structure, a set of 
neurons is interconnected, where each neuron is connected to all 
neurons in the next layer. The connections between the input, hidden, 
and output layers are established through weights and biases, which are 
parameters of the MLP network [34]. To train MLP neural networks, 
different learning algorithms are used, such as gradient backpropagation 
algorithm, gradient reduction algorithm, Bayesian regularization 
algorithm and Levenberg-Marquardt algorithm. The choice of each 
algorithm affects the learning time and accuracy of the network. Figure 
1 shows a schematic of a multilayer perceptron neural network. 

 

 
 

Figure 1. A prototype diagram of the MLP neural network [34]. 

2.1.2. Recurrent neural network 

A recurrent neural network (RNN) is a type of ANN where the links 
between nodes form a directed graph along a time sequence, enabling 
the algorithm to exhibit temporal dynamics (Figure 2). 

 

 
Figure 2. Schematic diagram of the RNN (http://colah.github.io). 

 
RNNs have loops. In Figure 2, section A receives the xt value as an 

input and outputs the ht value. The loop causes information to be sent 
from one stage to the next. The performance of RNN is not significantly 
different from that of normal neural networks. RNN can be 
conceptualized as multiple identical repetitions of a neural network, 
where each repetition passes its information to the next network [35]. 
In Figure 2, the state of the recurrent neural network can be observed if 
the loop depicted in Figure 3 is opened. 

In the past years, these networks have been used, which have led to 
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remarkable successes in various fields. Many of these successes are 
attributed to the use of LSTM networks, which are a special type of RNN 
that in most cases have a better performance than standard recurrent 
neural networks. It can be said that most of the successes of recurrent 
neural networks were achieved when LSTM networks were used. LSTM 
networks are designed to capture and learn long-term dependencies. 
They were first presented by Hochreiter and Schmidhuber [35] with the 
primary goal of addressing issues related to long-term dependencies in 
traditional RNNs. One of the key attributes of the LSTM networks is 
their inherent ability to retain information over long intervals, which is 
achieved through their unique structure. Unlike standard recurrent 
neural networks, LSTM networks incorporate specialized units that 
facilitate effective memory retention across distant time steps. This 
structural feature enables LSTM networks to excel in tasks requiring the 
capture of long-term dependencies. In standard RNNs, the recurrent 
units typically consist of simpler structures, such as a single hyperbolic 
tangent layer (tanh) in the hidden layer (Figure 4) [36]. 

 

 
Figure 3. Recurrent neural network shown in Figure 2 (http://colah.github.io). 

 

 
Figure 4. Recurrent units in standard recurrent neural networks 
(http://colah.github.io). 

 
LSTM networks also exhibit a sequence-like structure, but their 

repeating unit differs significantly. Instead of comprising a single neural 
network layer, LSTM units consist of four interacting layers that 
communicate with each other according to a specialized architecture 
(Figure 5). 

 

 
 

Figure 5. Repetitive units in the LSTM network, each hidden layer of which is four 
layers interacting with each other (http://colah.github.io). 

 

2.1.3. Convolutional Neural Network 

This method was introduced in the 1980s and 1990s. Although CNN 
was forgotten for a while, since 2012, and with the modification of this 
network, it has made great progress in most of the machine field and is 

expanding rapidly. The CNN is distinct from traditional deep neural 
networks with multiple hidden layers. Instead, CNNs are designed to 
mimic the processes of the visual cortex, allowing them to effectively 
identify and process images. This characteristic highlights a significant 
departure in how CNNs operate compared to earlier neural network 
models. Before the advent of CNNs, feature extraction was typically 
performed by researchers in various fields, requiring substantial effort 
and time. However, the performance of these manually designed feature 
extractors was often inconsistent and not always optimal. Importantly, 
these traditional feature extractors operated independently of ML 
techniques. In contrast, CNNs integrate feature extraction directly into 
their training process, eliminating the need for manual design. The 
feature extraction in CNNs is achieved through layers of neural 
networks whose weights are adjusted during training, optimizing their 
ability to automatically learn and extract relevant features from input 
data. A typical CNN consists of three layers; convolutional, pooling, and 
fully connected layers. Figure 6 illustrates a generalized schematic of a 
CNN for image classification, showcasing these layers and their 
functions. The convolution layer employs filters to perform convolution, 
followed by a Rectified Linear Unit (ReLU) layer for element-wise 
operations, resulting in a smoothed feature map. The pooling layer then 
decreases the dimension of the feature map through downsampling, 
flattening it into a linear vector. Finally, the fully connected layer 
classifies and identifies images. Figure 7 illustrates a general CNN 
structure, featuring parallel filters acting on input data to extract various 
features. The output vectors from each filter layer are concatenated and 
processed through a dense layer, akin to a multilayer perceptron neural 
network. This dense layer comprises neurons whose number is 
determined through trial and error or optimization. The model is 
executed to find weights and biases for the neurons, thereby optimizing 
the accuracy of predictions for the dependent variable. 

 

 
Figure 6. General scheme of a convolutional neural network and its layers [37]. 

 

 
Figure 7. A sample diagram of a deep learning CNN structure [38]. 

 
In each convolutional neural network, there are two stages for 

training: the forward step and the backward or backpropagation step. In 
the forward step, the image is passed through the network and its feature 
vector is extracted. Once the input image has been classified into one of 
the output classes, a loss function is defined to quantify the error 
between the predicted and actual classes. The weights of the filters (or 
kernels) in the convolutional layers are adjusted to minimize this loss 
function. The process of optimizing these weights involves using 
gradients in iterative steps, aiming to progressively improve the 
network's ability to accurately classify images. The gradients are 
calculated using the recursive law along the layers, and the weights and 
parameters are updated according to the gradient [39]. In the initial 
stage, the input image is fed into the network. At this stage, each 
neuron's parameters undergo pointwise multiplication with the input, 
followed by the application of the convolution operation within each 
layer. Subsequently, the network computes its output based on these 
operations. 

http://colah.github.io/
http://colah.github.io/
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2.2. Data presentation 

The Zagros basin, in the southwest of Iran and the east of Iraq, hosts 
many of the world's largest hydrocarbon fields, which were created by 
the continuous and long-term convergence between the Arabian and 
Eurasian plates during the closure of the Neotetis oceanic basin. The 
studied field is one of Iran's oil fields, which was discovered by Iran Oil 
Exploration and Production Company, and the length of this field is 
about 39 km and its width is 5 km. This field includes two oil reservoirs, 
Asmari and Bangestan. The Asmari reservoir of this field is 30 km long 
and 3 km wide [27]. From the point of view of geology, the Asmari 
formation is divided into 8 layers, and according to the contact surface 
of water and oil, only layers 1, 2 and 3 are located in the oil zone of the 
reservoir. Bangestan reservoir consists of two formations, Ilam and 
Sarvak. The Ilam formation consists of 3 layers, the 3rd layer is its 
production. Sarvak formation has 2 production layers 4 and 6 and layer 
5 does not participate in production. The total available well-logging 
data is 77319, which are located in the depth range of 305.26 to 2977.29 
meters. Available well logs are density (RHOB), caliper (CHAL), 
neutron (NEUT), laterolog7 (LL7), microlaterolog (MLL), 
photoelectric (PEF), primary and secondary velocity (Vp and Vs), and 
gamma ray (GR). 

2.2.1. Feature selection to reduce dimension 

The correlation between Vs and conventional well logs presents a 
complex nonlinear system problem, influenced by various elements 
within the Earth's system. This matter complicates the analysis and 
prediction of Vs. Choosing to use the most relevant logs instead of all 
existing conventional logs for model training and prediction can 
streamline data processing, enhance processing speed, and improve 
model efficiency [40]. Furthermore, feature selection enhances the 
accuracy of estimation and the general applicability of the model. In 
other words, incorporating all possible factors as model inputs would 
introduce numerous variables, complicating the network structure and 
potentially reducing estimation precision. Therefore, to simplify the 
model structure, enhance modeling capabilities, improve prediction 
efficiency, and mitigate the impact of non-critical variables on 
prediction results, feature selection is essential. In this paper, using 
Auto-encoder algorithm, the effective features and effective logs were 
determined to predict Vs. 

The data of RHOB, CHAL, NEUT, LL7, PEF, Vp, Vs, MLL and GR 
were available and were determined by applying the Auto-encoder's 
deep learning algorithm to the main features and logs. CHAL, RHOB, 
Vp, GR, and NEUT were selected as inputs for the MLP, LSTM, CNN, 
and CNN+LSTM models. Finally, four logs were determined as the main 
features and input of the algorithm, because selecting five features 
according to the deep learning algorithm, led to increased error and 
decreased accuracy. Figure 8 shows the workflow of feature selection 
using deep learning Auto-encoder algorithm. 

 

 
 

Figure 8. Display the workflow of feature selection using the Auto-encoder 
algorithm. 

 

2.2.2. Dataset division 

The reliability of prediction stands out as a primary concern in the 
performance evaluation of supervised DL algorithms. (Consonni et al. 
2010; Alsina et al. 2017). In this study, 77319 data points were available 
in the depth range of 305.26 to 2977.29 meters. At first, 19% of these data  

 
 

were separated from the end of the dataset as blind data and from the 
other data, 80% were taken as training data and 20% as testing data. To 
avoid over fitting, a validation split 0.1 of the training data is considered. 

2.2.3. Normalizing of data 

To reduce errors arising from variances in the amount of input data, 
the original data must undergo preprocessing in the experiment. In this 
paper, the Min-Max Normalization method is employed to scale the 
original data to the [0,1] range. This normalization process also helps 
eliminate dimensional discrepancies among the input variables. 

3. Model evaluation 

The efficiency of the DL models for Vs prediction was evaluated using 
several commonly used statistical criteria stated in Eqs. 1-6. Here, Mean 
Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Square Error (RMSE), 
Normalized RMSE (NMSRE), and Coefficient of Determination (R2) 
were used to evaluate the performance of the model predictions. 

These criteria include: Mean Absolute Percentage Error (MAPE), 
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 
Square Error (RMSE), Normalized Root Mean Squared Error 
(NMSRE), and Coefficient of Determination (R2). These metrics were 
employed to assess and compare the accuracy and reliability of the 
model predictions. 
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4. Results and discussion 

In this research, data were collected to predict Vs, which include logs 
RHOB, CHAL and NEUT, LL7, PEF, Vp, Vs, MLL, and GR. Figure 9 
shows the workflow of shear wave velocity prediction using the deep 
learning method. 

4.1. Empirical models for VS prediction 

In this section, the common models of Castagna, Eskandari, and 
Coello were reviewed, and their relations are illustrated in Table 1. Table 
2 presents the values of MAPE, MAE, MSE, RMSE, NRMSE, and R2. 
Figure 10 shows an assessment of measured and predicted Vs for the 
presented empirical models. According to Table 2, Figure 10 and by 
observing the errors and the coefficient of determination, it can be 
stated that the Castagna et al. model had less error and a higher 
coefficient of determination in Vs prediction than other models. 

4.2. Deep learning algorithms for Vs prediction 

As stated previously, 77319 samples have been recorded in the depth 
range of 305.26 to 2977.29 meters from logs in one of the wells of one of 
the hydrocarbon fields of Iran. At first, 19% (1634 sample) of this dataset 
was separated as blind data, and from the remaining part, 80% (5565 
sample) of the 6957 recorded data were selected as training and 20% 
(1392 sample) as testing data for evaluation. To predict the Vs using 
deep learning models, the data of logs, CHAL, RHOB, Vp, GR, and 
NEUT were selected by the Auto-encoder deep learning algorithm as 
model inputs for MLP, LSTM, CNN and CNN+LSTM models.
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Table 2. Vs prediction errors and accuracy for all data records using empirical models. 

Empirical Models MAE MAPE MSE RMSE NRMSE R2 

Castagna et al. 0.2520 11.6562 0.0786 0.2804 0.0837 0.8529 

Eskandari et al. 0.2749 14.9621 0.0919 0.3031 0.0905 0.8282 

Coello 0.3020 19.1391 0.1000 0.3163 0.0944 0.8130 

 

 
Figure 9. The workflow schematic for VS prediction. 

 

 

 

 
Figure 10. Comparison of the measured Vs (blue color) values and those obtained 
from the empirical relations (orange color). (a) Comparison of the measured Vs 
(blue color) values and those obtained from Coello relation. (b) Comparison of 
the measured Vs (blue color) values and those obtained from the Eskandari et al 
relation. (c) Comparison of the measured Vs (blue color) values and those 
obtained from the Castagna et al. relation. 

 

When constructing the MLP network for this purpose, the key 
parameters were set as follows: batch_size = 50, the learning rate= 
0.0001, the number of iterations was 100, two hidden layers (with 500 
nodes in the first layer and 300 nodes in the second layer), 
validation_split=0.1, the dense layer was set to 1, the activation function 
was the ReLu function and the Adam gradient descent algorithm was 
used for weight and bias updates. 

For building the LSTM network: batch size = 512, learning rate = 0.01, 
the number of iterations = 150, two hidden layers (with 100 nodes in the 
initial layer and 200 nodes in the second layer), validation split = 0.1, the 
Adam optimization function, and one dense layer. 

In the case of the CNN model, which aimed to predictVs, three layers 
were employed. The number of filters in the initial layer was fixed at 64, 
in the second layer at 128, and in the third layer at 256. A kernel size of 
2, padding set to 'same', strides set to 1, batch size = 128, learning rate = 
0.0001, number of iterations = 100, validation split = 0.1, ReLU activation 
function, and one dense layer with Adam as the optimization function. 

For the CNN+LSTM model, which included two CNN and two 
LSTM layers, the initial CNN layer had 64 filters, the second had 128 
filters, a kernel size of 2, padding set to 'same', and strides set to 2. In the 
LSTM network, two hidden layers were utilized with 50 nodes in the 
initial layer and 100 nodes in the second layer. Additionally, a dropout 
rate of 0.2, Adam as the optimization function, learning rate of 0.01, 
batch size of 512, 150 iterations, and validation split of 0.1 were employed 
and one dense layer. 

Tables 3 displays Vs prediction errors and accuracies, respectively 
based on the training (80%) subsets. Figure 11 shows the train MSE (blue 
color) and validation MSE (orange color) error with MLP, LSTM, CNN, 
and CNN+LSTM algorithms for training data. Also, Figure 12 shows the 
train MAE (blue color) and validation MAE (orange color) error for 
four algorithms. According to Figures 11, 12 and Table 3, for Vs training 
data, four algorithms had a low error, where the MAE and MSE values 
were equal to 𝑀𝐴𝐸𝑀𝐿𝑃 = 0.0009  𝑀𝐴𝐸𝐿𝑆𝑇𝑀 = 0.0094 𝑀𝐴𝐸𝐶𝑁𝑁 =
0.0054 𝑀𝐴𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 = 0.0009 ,  and 𝑀𝑆𝐸𝑀𝐿𝑃 = 1.3778𝑒 −
06  𝑀𝑆𝐸𝐿𝑆𝑇𝑀 = 0.0001 𝑀𝑆𝐸𝐶𝑁𝑁 = 6.8188𝑒 − 05 𝑀𝑆𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 =
1.3778𝑒 − 06, respectively. 

 

Table 3. Vs Prediction errors for training data. 

Models MAE MAPE MSE RMSE NRMSE R2 

MLP 0.0009 0.0365 1.3778e-06 0.0011 0.0008 0.9999 

LSTM 0.0094 0.4162 0.0001 0.0113 0.0077 0.9985 

CNN 0.0054 0.2125 6.8188e-05 0.0082 0.0056 0.9992 

CNN+LSTM 0.0009 0.0365 1.3778e-6 0.0011 0.0008 0.9999 

 
Figure 13 displays a comparison of the predicted Vs and measured Vs 

for training data, blue log (Vs measured for training data), orange log 
(Vs predicted for training data). Figure 14 shows the coefficient of 
determination of the training data of the measured Vs and the predicted 
Vs for four algorithms. As seen, the R2 values for training data were equal 
to 𝑅𝑀𝐿𝑃

2 = 0.9999  𝑅𝐿𝑆𝑇𝑀
2 = 0.9985 𝑅𝐶𝑁𝑁

2 = 0.9992 , 𝑅𝐶𝑁𝑁+𝐿𝑆𝑇𝑀
2 =

0.9999. According to Table 3 and Figures 11, 12, 13, and 14 it can be said 
that all four observed algorithms had very low error and high coefficient 
of determination for training data. 

Tables 4, displays the Vs estimation errors and accuracies based on 
the testing data (20%) subset for four algorithms. Figure 15 provides a 
comparison of the predicted and measured Vs values using four 
algorithms for testing data. According to Figure 15 and Table 4, for Vs 
testing data, the MAE and MSE values of each algorithm were equal to  
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Figure 11. Display of train MSE (blue color) and validation MSE error (orange color) for four algorithms. (a), MLP algorithm. (b), LSTM algorithm. (c), CNN algorithm. 

(d), CNN+LSTM algorithm. 

 

 
Figure 12. Display of train MAE (blue color) and validation MAE error (orange color) for four algorithms. (a), MLP algorithm. (b), LSTM algorithm. (c), CNN 

algorithm. (d), CNN+LSTM algorithm. 
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Figure 13. A comparison of the predicted Vs with those of measured Vs data for four algorithms of training data. (a), Vs prediction with the MLP algorithm. (b), Vs 
prediction with the LSTM algorithm. (c), Vs prediction with the CNN algorithm. (d), Vs prediction with the CNN + LSTM algorithm. Blue log (Vs measured), orange log 
(Vs predicted). 

 

 
 

Figure 14. Comparison of the coefficient of determination (R2) of training data for measured and predicted Vs using four algorithms. (a) R2 of the MLP algorithm. (b) 
R2 of the LSTM algorithm. (c) R2 of the CNN algorithm. (d) R2 of the CNN+LSTM algorithm. 
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Table 4. Vs Prediction errors and accuracy for testing data. 

Models MAE MAPE MSE RMSE NRMSE R2 

MLP 0.0185 0.6093 0.0005 0.0235 0.0225 0.9745 

LSTM 0.0082 0.2756 8.8125e-5 0.0093 0.0090 0.9959 

CNN 0.0052 0.1699 6.8915e-5 0.0083 0.0079 0.9968 

CNN+LSTM 0.0023 0.0775 1.7100e-5 0.0041 0.0039 0.9993 

 

 
Figure 15. Comparison of the predicted Vs with those of measured values using four algorithms of testing data. (a) Vs prediction for testing data using MLP algorithm. (b) 
Vs prediction using the LSTM algorithm. (c) Vs prediction using the CNN algorithm. (d) Vs prediction using the CNN + LSTM algorithm. Blue log (Vs measured), orange 
log (Vs predicted). 

 
𝑀𝐴𝐸𝑀𝐿𝑃 = 0.0185  𝑀𝐴𝐸𝐿𝑆𝑇𝑀 = 0.0082 𝑀𝐴𝐸𝐶𝑁𝑁 =
0.0052 𝑀𝐴𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 = 0.0023 ,  and 𝑀𝑆𝐸𝑀𝐿𝑃 = 0.0005  𝑀𝑆𝐸𝐿𝑆𝑇𝑀 =
8.8125𝑒 − 05 𝑀𝑆𝐸𝐶𝑁𝑁 = 6.8915𝑒 − 05 𝑀𝑆𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 = 1.7100𝑒 − 05, 
respectively. 

Figure 16 shows the coefficient of determination values of the testing 
data for the measured Vs and predicted Vs using four algorithms. 
According to Figure 16 and Table 4, the coefficient of determination 
(R2) values for testing dataset of each algorithm were equal to 𝑅𝑀𝐿𝑃

2 =
0.9745  𝑅𝐿𝑆𝑇𝑀

2 = 0.9949 𝑅𝐶𝑁𝑁
2 = 0.9968 𝑅𝐶𝑁𝑁+𝐿𝑆𝑇𝑀

2 = 0.9993 . The 
results showed that the MLP algorithm had the lowest R2 value, while 
the CNN + LSTM algorithm had the highest R2 value. 

Figure 17 provides a comparison of the predicted and measured Vs 
values for training and testing data using four different deep learning 
algorithms. 

To confirm the efficiency of the algorithms, they were applied to the 
blind dataset. Tables 5 depicts the predicted Vs errors and the coefficient 
of determination based on the blind subsets of data, selected from the 
1634 data records. The estimated Vs error values for blind dataset were 
equal to 𝑀𝐴𝐸𝑀𝐿𝑃 = 0.0938  𝑀𝐴𝐸𝐿𝑆𝑇𝑀 = 0.0510 𝑀𝐴𝐸𝐶𝑁𝑁 =
0.0373 𝑀𝐴𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 = 0.0238  and 𝑀𝑆𝐸𝑀𝐿𝑃 = 0.0090  𝑀𝑆𝐸𝐿𝑆𝑇𝑀 =
0.0028 𝑀𝑆𝐸𝐶𝑁𝑁 = 0.0019 𝑀𝑆𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 = 0.0006 . Figure 18 shows a 
comparison of the predicted and measured Vs values for the blind 
dataset of each algorithm. 

Figure 19 shows the coefficient of determination of the blind dataset 
comparing the measured and predicted Vs for four deep learning 
algorithms. According to Figures 18 and 19, the coefficient of 
determination for four deep learning algorithms was equal to 𝑅𝑀𝐿𝑃

2 =

0.9004  𝑅𝐿𝑆𝑇𝑀
2 = 0.9689 𝑅𝐶𝑁𝑁

2 = 0.9782 𝑅𝐶𝑁𝑁+𝐿𝑆𝑇𝑀
2 = 0.9934 . The 

results showed that the MLP algorithm had the lowest coefficient of 
determination, while the CNN + LSTM algorithm had the highest 
coefficient of determination. 

The deep learning algorithm is one of the newest and highly accurate 
methods for predicting Vs. In this paper, four algorithms (MLP, LSTM, 
CNN and CNN + LSTM) were used to predict Vs. In this research, the 
aim was to evaluate the accuracy of these DL algorithms in Vs 
prediction.  The results showed the high accuracy of the CNN and 
CNN+LSTM algorithms for Vs prediction. In addition, these algorithms 
offered more advantages than MLP and traditional empirical models in 
terms of accuracy and robustness in estimation. 

5. Conclusion 

In this research, some models were established for estimating Vs 
based on four algorithms; MLP, CNN, LSTM, and CNN+LSTM. To 
achieve the goal, first, the Auto-encoder algorithm was used to select the 
effective features, and the effective features from the CHAL, RHOB, Vp, 
GR, and NEUT logs were selected. In the next step, the model was 
defined and trained using four algorithms: MLP, LSTM, CNN, and 
CNN+LSTM. To estimate Vs, the designed structure of the MLP model 
included two layers with the initial layer containing 500 nodes and the 
second layer containing 300 nodes. The LSTM model also included two 
layers with the initial layer containing 100 nodes and the second layer 
containing 200 nodes and a dropout rate of 0.2. The CNN model 
consisted of three layers, 64 filters in the initial layer, 128 filters in the 
second layer, and 256 filters in the third layer. The CNN+LSTM model  
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Figure 16. Comparison of the coefficient of determination (R2) of testing data for measured and predicted Vs using four algorithms. (a) R2 using the MLP algorithm. (b) 

R2 using the LSTM algorithm. (c) R2 using the CNN algorithm. (d) R2 using the CNN+LSTM algorithm. 

 

 
Figure 17. Comparison of the predicted Vs with those of measured values using four algorithms for training and testing data. (a) Vs prediction for training and testing 

data using the MLP algorithm. (b) Vs prediction using the LSTM. (c) Vs prediction using the CNN. (d) Vs prediction using the CNN + LSTM model. 

 
 

Table 5. Vs Prediction errors for blind dataset. 

Deep Learning models MAE MAPE MSE RMSE NRMSE R2 

MLP 0.0938 3.6227 0.0090 0.0947 0.0612 0.9004 

LSTM 0.0510 1.9711 0.0028 0.0529 0.0342 0.9689 

CNN 0.0373 1.5226 0.0019 0.0442 0.0286 0.9782 

CNN+LSTM 0.0238 0.9286 0.0006 0.0243 0.0157 0.9934 
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Figure 18. Comparison of the predicted Vs with those of measured values using four algorithms of the blind dataset. (a) Vs prediction using the MLP algorithm. (b) Vs 

prediction using the LSTM algorithm. (c) Vs prediction using the CNN algorithm. (d) Vs prediction using the CNN + LSTM algorithm. 

 

 

 

 
Figure 19. Comparison of the coefficient of determination (R2) of blind data for measured and predicted Vs using four algorithms. (a) R2 using the MLP algorithm. (b) 

R2 using the LSTM algorithm. (c) R2 using the CNN algorithm. (d) R2 using the CNN+LSTM algorithm. 
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included two CNN and two LSTM layers; the initial CNN layer had 64 
filters, the second had 128 filters, and in the LSTM network, two hidden 
layers were utilized with 50 nodes in the initial layer and 100 nodes in 
the second layer. To evaluate the performance and accuracy of the 
algorithms, the parameters MAE, MAPE, MSE, RMSE, and R2 were 
used. In the next step, to ensure the results of the algorithms and 
generalize prediction results to other areas, these algorithms were 
applied to blind data, and their Vs error values for blind data were found 
as: 𝑀𝑆𝐸𝑀𝐿𝑃 = 0.0090  𝑀𝑆𝐸𝐿𝑆𝑇𝑀 = 0.0028 𝑀𝑆𝐸𝐶𝑁𝑁 = 0.0019 𝑀𝑆𝐸𝐶𝑁𝑁+𝐿𝑆𝑇𝑀 =

0.0006  and their R2 values were found as: 𝑅𝑀𝐿𝑃
2 = 0.9004  𝑅𝐿𝑆𝑇𝑀

2 =

0.9689 𝑅𝐶𝑁𝑁
2 = 0.9782 𝑅𝐶𝑁𝑁+𝐿𝑆𝑇𝑀

2 = 0.9934 . The results indicated that 
acceptable outcomes can be achieved using MLP, LSTM, CNN, and 
CNN+LSTM models for Vs prediction. However, compared to MLP 
models, the LSTM, CNN, and CNN+LSTM models demonstrate better 
stability and a superior ability to predict trend changes. Besides, it was 
found that these deep learning methods are more accurate than 
traditional empirical models for Vs prediction. Additionally, the 
presented methods are highly applicable to well log data gathered from 
different wells, offering a new approach for research on Vs prediction. 
These findings reveal that the methods proposed have promising 
application prospects for Vs prediction. Moreover, it has been found 
that a combined CNN+LSTM model can improve prediction results. 

References 

[1] Castagna, J.P., Batzle, M.L., Eastwood, R.L., (1985). Relationships 
between compressional wave and shear-wave velocities in 
clastic silicate rocks. Geophysics 50 (4), 571–581. 

[2] Eskandari, H., Rezaee, M.R., Mohammadnia, M., (2004). 
Application of multiple regression and artificial neural network 
techniques to predict shear wave velocity from wireline log data 
for a carbonate reservoir, South Iran. Can. Soc. Explor. Geophys. 
(CSEG) Rec. 29, 42–48. 

[3] Coello, C.C., (2007). Evolutionary algorithms for solving 
multiobjective problems: Springer Science & Business Media. 
https:// link.springer.com/book/10.1007%2F978-0-387-36797-2. 

[4] Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term 
dependencies with gradient descent is difficult. IEEE Trans. 
Neural Network. 5 (2), 157–166. 

[5] Krizhevsky, A., Sutskever, I., E. Hinton, G. (2017). ImageNet 
classification with deep convolutional neural networks. 
Commun ACM 60:84–90. https://doi. org/10.1145/3065386. 

[6] Kacprzyk. J., (2008). Studies in Computational Intelligence, 
Volume 121. 

[7] He. K, X. Zhang, S. Ren, and J. Sun. (2016). Deep residual learning 
for image recognition, Paper read at Proceedings of the IEEE 
conference on computer vision and pattern recognition. 

[8] Rezaee, MR., Kadkhodaei, A., Barabadi, A. (2007). Prediction of 
shear wave velocity from petrophysical data utilizing intelligent 
systems: An example from a sandstone reservoir of Carnarvon 
Basin, Australia. J Petrol Sci Eng 55:201–212. 
https://doi.org/10.1016/j.petrol.2006.08.008. 

[9] Rajabi, M., Bohloli, B., Hangar, E.  (2010). Intelligent approaches 
for prediction of compressional, shear and Stoneley wave 
velocities from conventional well log data: A case study from the 
Sarvak carbonate reservoir in the Abadan Plain (Southwestern 
Iran). Comput Geosci 36:647–664. https://doi.org/10.1016/ 
j.cageo.2009.09.008. 

[10] Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., 
& Rajoli, M. (2011). Prediction of shear and Compressional 
Wave Velocities from petrophysical data utilizing genetic 
algorithms technique: A case study in Hendijan and Abuzar 
fields located in Persian Gulf. Geopersia, 1(1), 1-17. 

[11] Asoodeh, M., Bagheripour, P. (2012). Prediction of 
compressional, shear, and stonely wave velocities from 
conventional well log data using a committee machine with 
intelligent systems. Rock mechanics and rock engineering 45, 
45–63. https://doi.org/10. 1007/s00603-011-0181-2.  

[12] Asoodeh, M., Bagheripour, P. (2013). Neuro-fuzzy reaping of 
shear wave velocity correlations derived by hybrid genetic 
algorithm pattern search technique. Open Geosciences 5, 272–
284. https:// doi.org/10.2478/s13533-012-0129-4.  

[13] Asoodeh, M., Bagheripour, P. (2014). ACE stimulated neural 
network for shear wave velocity determination from well logs. J 
Apply Geophysics 107:102–107. https://doi.org/10.1016/ 
j.jappgeo.2014. 05.014.  

[14] Maleki, Sh., Moradzadeh, A., Ghavami Riabi, R., Gholami, R., 
Sadeghzadeh, F. (2014). Prediction of shear wave velocity using 
empirical correlations and artificial intelligence methods. 
NRIAG J Astron Geophys 3:70–81. https://doi.org/10.1016/ 
j.nrjag.2014.05.001. 

[15] Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J. (2014). 
Shear wave velocity prediction using seismic attributes and well 
log data. Acta Geophysica 62, 818–848. https://doi.org/10.2478/ 
s11600-013-0200-7. 

[16] Akhundi, H., Ghafoori, M., Lashkaripour, G.R. (2014). Prediction 
of shear wave velocityusing artificial neural network technique, 
multiple regression and petrophysical data:a case study in 
asmari reservoir (SW Iran). Open J. Geol. 4, 303–313. 

[17] Kadkhodaie-Ilkhchi., A. (2015). A systematic approach for 
estimation of reservoir rock properties using Ant Colony 
Optimization. Geopersia, 5(1), 7-17. 

[18] Bagheripour., P., Gholami., A., Asoodeh., M., & Vaezzadeh-Asadi., 
M. (2015). Support vector regression based determination of 
shear wave velocity. Journal of Petroleum Science and 
Engineering, 125, 95-99. 

[19] Al-Dousari, M., Garrouch, A.A., Al-Omair, O. (2016). 
Investigating the dependence of shear wave velocity on 
petrophysical parameters. J. Petrol. Sci. Eng. 146, 286–296. 

[20] Singh, S., Kanli, A.I. (2016). Estimating shear wave velocities in 
oil fields: a neural network approach. Geosciences Journal 20, 
221–228. https:// link.springer.com/article/10.1007%2Fs12303-
015-0036-z. 

[21] Behnia, D., Ahangari, K., Moeinossadat, S. R. (2017). Modeling of 
shear wave velocity in limestone by soft computing methods. Int 
J Min Sci Technol 27:423–430. https://doi.org/10.1016/ 
j.ijmst.2017.03.006. 

[22] Shiroodi, SK., Ghafoori, M., Ansari, H. R., Lashkaripour, G., 
Ghanadian, M. (2017). Shear wave prediction using committee 
fuzzy model constrained by lithofacies, Zagros basin, SW Iran. J 
Afr Earth Sc 126:123–135. https://doi.org/10.1016/ 
j.jafrearsci.2016.11.016. 

[23] Mehrgini, B., Izadi, H., Memarian, H. (2019). Shear wave velocity 
prediction using Elman artificial neural network. Carbonates 
Evaporites 34 (4), 1281–1291. 

[24] Alkinani, H.H., AL hamidi, S., Dunn norman, R. E., Flori, M. A., 
AL Alwani, A. R. (2019). Intelligent data-driven analytics to 
predict shear wave velocity in carbonate formations: 
comparison between recurrent and conventional neural 
networks. OnePetro. https://onepetro.org/conference-
paper/ARMA-2019-0511. 

[25] Zhang, Y., Zhong, H. R., Wu, Z., Zhou, H., Ma, Q. (2020). 
Improvement of petrophysical workflow for shear wave velocity 
prediction based on machine learning methods for complex 

https://doi.org/10.1016/j.petrol.2006.08.008
https://doi.org/10.1016/j.cageo.2009.09.008
https://doi.org/10.1016/j.cageo.2009.09.008
https://doi.org/10.1016/%0bj.ijmst.2017.03.006
https://doi.org/10.1016/%0bj.ijmst.2017.03.006
https://onepetro.org/conference-paper/ARMA-2019-0511
https://onepetro.org/conference-paper/ARMA-2019-0511


42 F. Mollaei et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 59-1 (2025) 31-42191-199 

 

carbonate reservoirs. J Petrol Sci Eng 192:107234. 
https://doi.org/10.1016/j.petrol.2020.107234. 

[26] Wood, DA. (2020). Bakken stratigraphic and type well log 
learning network exploited to predict and data mine shear wave 
acoustic velocity. J Appl Geophys 173:103936. 
https://doi.org/10.1016/j. jappgeo.2019.103936. 

 [27] Gholami, A., Seyedali, S M., Ansari, H. R. (2020). Estimation of 
shear wave velocity from post-stack seismic data through 
committee machine with cuckoo search optimized intelligence 
models. J Petrol Sci Eng 189:106939. https://doi.org/ 
10.1016/j.petrol.2020.106939. 

[28] Wang, J., Cao, J., Liu, Z., Lei, X., Zhou, X. (2020). Method of well 
logging prediction prior to well drilling based onlong short-
term memory recurrent neural network[J]. J. Chengdu Univ. 
Technol. (Sci. Technol. Ed.) 47 (2), 227–236. 

[29] Ghorbani, H., Davoodi, S., Davarpanah, A. (2021). Accurate 
determination of shear wave velocity using LSSVM-GA 
algorithm based on petrophysical log, 1 ed. European 
Association of Geoscientists & Engineers, pp. 1–3. 
https://doi.org/10.3997/2214-4609.202137015. 

[30] Olayiwola, T., Sanuade, OA. (2021). A data-driven approach to 
predict compressional and shear wave velocities in reservoir 
rocks. Petroleum 7:199–208. https://doi.org/10.1016/ 
j.petlm.2020.07.008. 

[31] Ebrahimi, A., Izadpanahi, A., Ebrahimi, P., Ranjbar, A., (2022). 
Estimation of shear wave velocity in an Iranian oil reservoir 
using machine learning methods. J Petrol Sci Eng 209:109841. 
https://doi.org/10.1016/j.petrol.2021.109841. 

[32] Gholami Vijouyeh, A., Kadkhodaie, A., Hassanpour Sedghi, M., 
(2022). A committee machine with intelligent experts (CMIE) 
for estimation of fast and slow shear wave velocities utilizing 
petrophysical logs. Computers & Geosciences. Volume 165, 
August 2022, 105149. https://doi.org/10.1016/j.cageo.2022.105149. 

[33] Nasrnia, B., Falahat, R., Kadkhodaie, A., Gholami Vijouyeh, A., 
(2023). A committee machine-based estimation of shear 
velocity log by combining intelligent systems and rock-physics 
model using metaheuristic algorithms. Volume 126, Part A, 
November 2023, 106821. https://doi.org/10.1016/ 
j.engappai.2023.106821. 

[34] Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., 
Rashed, A., (2010). Modeling of maximum dry density and 
optimum moisture content of stabilized soil using artificial 
neural networks.  

[35] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. 
Neural Comput. 9 (8), 1735–1780. 

[36] Gers, F.A., Schraudolph, N.N., Schmidhuber, J. (2003). Learning 
precise timing with lstm recurrent networks. J. Mach. Learn. Res. 
3 (1), 115–143. 

[37] Biranvand, N., Kikhai, M., Roein. (2019). presenting a method in 
the field of revealing targets in satellite images using deep 
learning and with remote sensing and GIS approach, 
Geographical 

[38] Abad, B., Rajabi, A., Mousavi, S. M. V., Mohamadian, N., Wood, 
D., Ghorbani, H., Davoodi, Sh., Alvar, M., Shahbazi, Kh., 2021b. 
Hybrid machine learning algorithms to predict condensate 
viscosity in the near wellbore regions of gas condensate 
reservoirs. Journal of Natural Gas Science and Engineering 
95,104210. https://doi.org/10.1016/j.jngse.2021.104210.  

[39] Sezavar, A., Fersi, H., Mohamadzadeh, S. (2015). Image retrieval 
using deep learning. 4th International Conference on Applied 
Research in Computer Engineering and Signal Processing. 
Vol.3, No. 1, 28-42. 

[40] Anemangely, M., Ramezanzadeh, A., Tokhmechi, B. (2017). 
Shear wave travel time estimation from petrophysical logs using 
ANFIS-PSO algorithm: a case study from Ab-Teymour Oilfield. 
J. Nat. Gas Sci. Eng. 38, 373–387. 

[41] Kingma, D.P., Ba, J. (2014). Adam: A Method for Stochastic 
Optimization. https://arxiv. org/abs/1412.6980. 

[42] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient 
methods for online learning and stochastic optimization. 
J.Machine Learning Research. 12 (Jul), 2121–2159. 

[43] Tieleman, T., Hinton, G. (2012). Lecture 6.5-rmsprop: divide the 
gradient by a running average of its recent magnitude. 
COURSERA: Neural Networks for Machine Learning 4, 26–30. 

 
 

https://doi.org/10.1016/%0bj.petlm.2020.07.008
https://doi.org/10.1016/%0bj.petlm.2020.07.008
https://doi.org/10.1016/j.petrol.2021.109841
https://doi.org/10.1016/j.cageo.2022.105149
https://doi.org/10.1016/j.engappai.2023.106821
https://doi.org/10.1016/j.engappai.2023.106821

