[1] Medjnoun, A., Khiatine, M. & Bahar, R. (2014). Caractérisation minéralogique et géotechnique des argiles marneuses gonflantes de la région de Médéa, Algérie. Bulletin of Engineering Geology and the Environment, Springer, 73 (4).
[2] Mebarki, M., Kareche, T., Derfouf, F. E. M., Taibi, S. & Abou-bekr, N. (2019). Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria). Geomechanics and Engineering, 17, 69‑79. https://doi.org/10.12989/GAE.2019.17.1.069
[3] Bourokba Mrabent, S.A., Hachichi, A., Souli, H., Taibi, S. & Fleureau, J. M. (2017). Effect of lime on some physical parameters of a natural expansive clay from Algeria. European Journal of Environmental and Civil Engineering, Taylor & Francis. 21, 108‑25.
[4] Athmania, D., Benaissa, A., Hammadi, A. & Bouassida, M. (2010). Clay and marl formation susceptibility in Mila Province, Algeria. Geotechnical and Geological Engineering, Springer. 28, 805‑13.
[5] Medjnoun, A. et Bahar, R. (2016) Shrinking–swelling of clay under the effect of hydric cycles. Innovative Infrastructure Solutions, Springer. 1, 1‑8.
[6] Smaida, A., Mekerta, B. & Gueddouda, M. K. (2021). Physico-mechanical stabilization of a high swelling clay. Construction and Building Materials, Elsevier. 289, 123197.
[7] Khennouf, A., Baheddi, M. (2020). Heave analysis of shallow foundations founded in swelling clayey soil at N’Gaous city in Algeria. Studia Geotechnica et Mechanica, 42, 210‑21. https://doi.org/10.2478/sgem-2019-0051
[8] Derriche, Z., Cheikh-Lounis, G. (2004). Geotechnical characteristics of the Plaisancian marls of Algiers. Bulletin of Engineering Geology and the Environment, Springer. 63, 367‑78.
[9] Rathore, P., Tiwari, S. K. (2023). Soil Stabilization using Ceramic Waste: an Experimental Study. Journal of Mining and Environment. 14 (1), 47‑65.
[10] Rao, S. M., Reddy, B. V. V. & Muttharam, M. (2001). The impact of cyclic wetting and drying on the swelling behaviour of stabilized expansive soils. Engineering geology, Elsevier. 60, 223‑33.
[11] Nabil, M., Mustapha, A. & Rios, S. (2020). Impact of wetting—drying cycles on the mechanical properties of lime-stabilized soils. International Journal of Pavement Research and Technology, 13, 83‑92. https://doi.org/10.1007/s42947-019-0088-y
[12] Dakshanamurthy, V., Raman, V. (1973). A simple method of identifying an expansive soil. Soils and foundations. The Japanese Geotechnical Society, 13, 97‑104.
[13] Djedid, A., Bekkouche, A. & Mamoune, S. M. (2001). Identification and prediction of the swelling behavior of some soils from the Tlemcen region of Algeria. Bulletin des laboratoires des ponts et chaussées, 233, 69‑77.
[14] Huang, C., Wang, X., Zhou, H. & Liang, Y. (2019). Factors affecting the swelling-compression characteristics of clays in Yichang, China. Adv. Civ Eng, 1. https://doi.org/10.1155/2019/6568208
[15] Estabragh, A. R., Parsaei, B. & Javadi, A. A. (2015). Laboratory investigation of the effect of cyclic wetting and drying on the behaviour of an expansive soil. Soils and foundations, Elsevier. 55, 304‑14.
[16] Zeng, Z., Kong, L., Wang, M. & Sayem, H. M. (2018). Assessment of engineering behaviour of an intensely weathered swelling mudstone under full range of seasonal variation and the relationships among measured parameters. Canadian Geotechnical Journal. NRC Research Press. 55, 1837‑49.
[17] Soltani, A., Taheri, A., Khatibi, M. & Estabragh, A. R. (2017). Swelling potential of a stabilized expansive soil: a comparative experimental study. Geotechnical and Geological Engineering, Springer. 35, 1717‑44.
[18] Abbas, M. F., Shaker, A. A. & Al-Shamrani, M. A. (2023). Hydraulic and volume change behaviors of compacted highly expansive soil under cyclic wetting and drying. Journal of Rock Mechanics and Geotechnical Engineering, Elsevier. 15, 486‑99.
[19] Mustafaev, A. A. (1989). Фундаменты на просадочных и набухающих грунтах. М.: Высшая школа. 588.
[20] Zemenu, G., Martine, A. & Roger, C. (2009). Analysis of the behaviour of a natural expansive soil under cyclic drying and wetting. Bulletin of Engineering Geology and the Environment, 68, 421‑36. https://doi.org/10.1007/s10064-009-0203-4
[21] Onyelowe, K. C., Aneke, F. I., Onyia, M. E., Ebid, A. M. & Usungedo, T. (2023). AI (ANN, GP, and EPR)-based predictive models of bulk density, linear-volumetric shrinkage & desiccation cracking of HSDA-treated black cotton soil for sustainable subgrade. Geomechanics and Geoengineering, Taylor & Francis.
[22] Onyelowe, K. C., Ebid, A. M., Onyia, M. E. & Amanamba, E. C. (2022). Estimating the swelling potential of non-carbon–based binder (NCBB)-treated clayey soil for sustainable green subgrade using AI (GP, ANN and EPR) techniques. International Journal of Low-Carbon Technologies, 17, 807‑15. https://doi.org/10.1093/ijlct/ctac058
[23] Dao, H. M., Nguyen, A. T. T., Do, T. M. & Do, T. M. (2020). Effect of wetting-drying cycles on surface cracking and swell-shrink behavior of expansive soil modified with ionic soil stabilizer. Journal of Mining and Earth Sciences, 61, 1‑13.
[24] Aneke, F. I., Onyelowe, K. C. & Ebid, A. M. (2024). AI-Based Estimation of Swelling Stress for Soils in South Africa. Transportation Infrastructure Geotechnology, 11, 1049‑72. https://doi.org/10.1007/s40515-023-00311-4
[25] Onyelowe, K. C., Ebid, A. M., Nwobia, L. I.
& al. (2022). Shrinkage Limit Multi-AI-Based Predictive Models for Sustainable Utilization of Activated Rice Husk Ash for Treating Expansive Pavement Subgrade.
Transp. Infrastruct. Geotech, 9, 835–853.
https://doi.org/10.1007/s40515-021-00199-y
[26] Aneke, F. I., Onyelowe, K. C., Ebid, A. M. & al. (2022). Predictive models of swelling stress—a comparative study between BP- and GRG-ANN. Arab J Geosci 15, 1438. https://doi.org/10.1007/s12517-022-10706-1
[27] ASTM D4546-08. (2008). Standard Test Method for One-Dimensional Swell or Settlement Potential of Cohesive Soil. ASTM International West Conshohocken, PA.
[28] ASTM D4546-03. (2003) Standard Test Methods For One-Dimensional Swell Or Settlement Potential Of Cohesive Soils. Annual Book of ASTM Standards, ASTM International West Conshohocken, PA, USA. 04, 992‑1001.
[29] ASTM, A. (2003) Standard test methods for one-dimensional swell or settlement potential of cohesive soils. ASTM International West Conshohocken, PA.
[30] AFNOR. (1995) NF P94-091 Détermination des déformations par chargement de plusieurs éprouvettes.
[31] Puppala, A. J., Manosuthikij, T., & Chittoori, B. C. (2013). Swell and shrinkage characterizations of unsaturated expansive clays from Texas. Engineering Geology, 164, 187-194.