A novel method for interpreting potential field anomalies using the Rootsig function

Document Type : Research Paper

Authors

Institute of Geophysics, University of Tehran, Tehran, Iran.

10.22059/ijmge.2024.382962.595198

Abstract

Potential field data play a crucial role in the interpretation of various geological structural features. The application of edge detection techniques significantly improves the capacity to delineate subsurface structures. In recent years, a variety of methodologies have been developed to identify edges; however, each of these methodologies possesses distinct advantages and limitations. This study presents a novel edge enhancement technique that employs the Total Horizontal Derivative (THD) in conjunction with the Rootsig activation function (RTHD). This technique is applied to the interpretation of potential field data to enhance structural mapping. The effectiveness of the RTHD is evaluated through the interpretation of synthetic gravity and magnetic anomalies, both with and without the presence of noise, including sources located at various depths. Furthermore, the RTHD technique is applied to investigate gravity field data from the Považský Inovec Mountains, located in the Western Carpathians of Slovakia. In this region, the boundaries of the primary anomalies, as well as the Považie and Ripňany faults, are distinctly delineated. The results demonstrate that the RTHD approach effectively delineates edges and balances the amplitudes of both shallow and deep-seated sources, in contrast to traditional edge enhancement methods. The findings indicate that the RTHD represents a more effective strategy for structural mapping when utilizing gravity and magnetic data.

Keywords

Main Subjects


[1] Ghiasi, S. M., Hosseini, S. H., Afshar, A., & Abedi, M. (2023). A novel magnetic interpretational perspective on the Charmaleh iron deposit through improved edge detection techniques and 3D inversion approaches. Natural Resources Research, 32(1), 147-170.
[2] Fedi, M. (2007). DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics 72: I1–I11. https://doi.org/10.1190/1.2399452.
[3] Cella, F., Fedi, M., & G. Florio. (2009). Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting 57: 543–57. https://doi.org/10.1111/j.1365-2478.2009.00808.x.
[4] Pham, L.T., Oksum, E., Do, T. D., & Le-Huy, M., (2018). New method for edges detection of magnetic sources using logistic function. Geofizicheskiy Zhurnal, 40(6), 127-135.
[5] Alvandi, A., Deniz Toktay, H., & Nasri, S. (2022). Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures. Acta Geophysica, 70, 659–667. https://doi.org/10.1007/s11600-022-00750-6.
[6] Al-Bahadily HA, Al-Rahim AM, & Smith RS. (2023). Determination of reactivated regions and faults in the Iraq Southern Desert with the new edge technique, Inverse Tilt Angle of Second-gradients (ITAS). Acta Geophysica 72:1675–1692.
[7] Ekinci YL, Balkaya Ç, Göktürkler G, & Ai H. (2023). 3-D gravity inversion for the basement relief reconstruction through modified success-history-based adaptive differential evolution. Geophysical Journal International 235 (1): 377-400, https://doi.org/10.1093/gji/ggad222.
[8] Su, K, Ai, H, Alvandi, A, Lyu, C, Wei, X, Qin, Z, Tu, Y, Yan, Y & Nie, Tao. (2024). Hunger Games Search for the elucidation of gravity anomalies with application to geothermal energy investigations and volcanic activity studies, Open Geosciences, 16 (1). https://doi.org/10.1515/geo-2022-0641.
[9] Cooper, G.R.J. & Cowan, D.R. (2006). Enhancing potential field data using filters based on the local phase. Comput. Geosci.,32, 1585–1591.
[10] Cooper, G.R.J. (2009). Balancing images of potential field data. Geophysics, 74, L17–L20.
[11] Ekinci YL, & Yigitbas E. (2015). Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodinam Acta 27(4):300–319
[12] Eldosouky AM, El-Qassas RAY, Pour AB, Mohamed H, & Sekandari M. (2021). Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv Space Res 68(9):3641–3662.
[13] Eldosouky AM, Pham LT, & Henaish A. (2022). High precision structural mapping using edge filters of potential field and remote sensing data: a case study from Wadi Umm Ghalqa area, South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science 25 (2): 501-513.
[14] Pham LT. (2024). An improved edge detector for interpreting potential field data. Earth Science Informatics. https://doi.org/10.1007/s12145-024-01286-7.
[15] Deniz Toktay, H., Prasad, K. N. D., & Alvandi, A. (2024). Edge enhancement of potential field data using the enhanced gradient (EG) filter. Bulletin of the Mineral Research and Exploration, 174(174), 55-66. https://doi.org/10.19111/bulletinofmre.1386653.
[16] Ai, H., Deniz Toktay, H., Alvandi, A., Pasteka, R., Su, K., & Liu, Q. (2024). Advancing potential field data analysis: the Modified Horizontal Gradient Amplitude method (MHGA). Contributions to Geophysics and Geodesy, 54(2), 119-143. https://doi.org/10.31577/congeo.2024.54.2.1.
[17] Pham LT. (2023). A novel approach for enhancing potential fields: application to aeromagnetic data of the Tuangiao, Vietnam. The European Physical Journal Plus 138: 1134. https://doi.org/10.1140/epjp/s13360-023-04760-1.
[18] Cordell L, Grauch VJS. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly society of exploration geophysics, p 181–197.
[19] Blakely J. R., & Simpson W.R., (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51(7), 1494-1498.
[20] Nabighian, M.N., (1984). Toward a tree dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49(6), 780-786.
[21] Roest, W.R.J., Verhoef, J., & Pilkington, M., (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.
[22] Prasad, K.N.D., Pham, L.T., & Singh, A.P., (2022). Structural mapping of potential field sources using BHG filter. Geocarto International, 37, 1-22, https://doi.org/10.1080/10106049.2022.2048903.
[23] Alvandi A, Ardestani V.E. (2023) Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography 64: 279–300.
[24] Alvandi A, Su K, Ai H, Ardestani VE, & Lyu C. (2023a). Enhancement of potential field source boundaries using the hyperbolic domain (Gudermannian Function). Minerals 13: 1312.
[25] Miller H. G., & Singh V. (1994). Potential field tilt A new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.
[26] Wijns, C. Perez, C. & Kowalczyk, P., (2005). Theta map: Edge detection in magnetic data. Geophysics, 70, L39-L43.
[27] Tatchum, N.C., Tabod, C. T., Koumetio, F., & Manguelle – Dicoum, E. (2011). A gravity model study for differentiating vertical and dipping geological contacts with application to a Bouguer gravity anomaly over the Foumban shear zone, Cameroon. Geophysica, 37, 33-55.
[28] Ferreira, F.J.F., de Souza, J., Bongiolo, A.B.S., & Castro, L.G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78, 33–31. https://doi.org/10.1190/geo2011-0441.1.
[29] Ma, G., Huang, D., & Liu, C., (2016). Step-edge detection filters for the interpretation of potential field data. Pure Appl. Geophys. 173 (3), 795–803.
[30] Ibraheem, I.M.; Aladad, H.; Alnaser, M.F. and Stephenson, R. (2021). IAS: A New Novel Phase-Based Filter for Detection of Unexploded Ordnances. Remote Sensing, 13, 4345.
[31] Duch W, & Jankowski N. (1999). Survey of neural transfer functions. Neural Comput Appl 2:163–212
[32] da S. Gomes, G.S., Ludermir, T.B. & Lima, L.M.M.R. (2011). Comparison of new activation functions in neural network for forecasting financial time series. Neural Comput & Applic 20, 417–439.
[33] Farzad, A., Mashayekhi, H. & Hassanpour, H. (2019). A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput & Applic 31, 2507–2521.
[34] Pham LT, Oksum E, Do TD, Le-Huy M, Vu MD, & Nguyen VD. (2019). LAS: a combination of the analytic signal amplitude and the generalized logistic function as a novel edge enhancement of magnetic data. Contrib Geophys Geod 49(4):425–440.
[35] Nasuti, Y., Nasuti, A., & Moghadas, D. (2019). STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176, 827–831. https://doi.org/10.1007/s00024-018-2016-5.
[36] Alvandi, A., Deniz Toktay, H., & Ardestani, VE. (2023b). Edge detection of geological structures based on a logistic function: a case study for gravity data of the Western Carpathians. International Journal of Mining and Geo-Engineering, 57(3), 267-274. https://doi.org/10.22059/ijmge.2023.353516.595018.
[37] Ekinci YL, Ertekin C, & Yigitbas E. (2013). On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey), Journal of Geophysics and Engineering 10:1742-2132.
[38] Tran KV, & Nguyen TN. (2020). A novel method for computing the vertical gradients of the potential field: application to downward continuation, Geophysical Journal International 220:1316–1329.
[39] Oliveira SP, & Pham LT. (2022). A stable finite difference method based on upward continuation to evaluate vertical derivatives of potential field data. Pure Appl Geophys 179(12):4555–4566.
[40] Hók, J., Šujan, M., & Šipka, F., (2014). Tectonic division of the Western Carpathians: an overview and a new approach. Acta Geol. Slovaca, 6(2), 135-143 (in Slovak, English summary).
[41] Pelech, O., Kušnirák, D., Bošanský, M., Dostál, I., Putiška, R., Hók, J., (2017). The resistivity image of the Upper Cretaceous Horné Belice Group: a case study from the Hranty section (Považský Inovec Mts., Western Carpathians). Acta Geologica Slovaca, 8, 43–58.
[42] Ivanička, J., Havrila, M., Kohút, M., Kováčik, M., Madarás, J., Olšavský, M., Hók, J., Polák, M., Filo, I., Elečko, M., Fordinál, K., Maglay, J., Pristaš, J., Buček, S. & Šimon, L., 2007: Geologická mapa Považského Inovca a jv. časti Trenčianskej kotliny 1: 50 000. Štátny geologický ústav Dionýza Štúra a Ministerstvo životného prostredia, Bratislava.
[43] Šujan, S., Rybár, M., Kováč, M., Bielik, D., Majcin, J., Minár, D., Plašienka, P., Nováková, J., Kotulová, 2021. The polyphase rifting and inversion of the Danube Basin revised Glob. Planet. Chang., 196.
[44] Zahorec P., Pašteka R., Mikuška J., Szalaiová V., Papčo J., Kušnirák D., Pánisová J., Krajňák M., Vajda P., Bielik M., Marušiak I., 2017: Chapter 7 – National Gravimetric Database of 
the Slovak Republic. In: Paˇsteka R., Mikuˇska J., Meurers B. (Eds.): Understanding the Bouguer Anomaly: A Gravimetry Puzzle. Elsevier, Amsterdam, 113–125, doi: 10.1016/B978-0-12-812913-5.00006-3.
[45] Florio, G., Fedi, M & Pasteka, R. (2006). On the application of Euler deconvolution to the analytic signal. Geophysics 71, no. 6: L87–L93. https://doi.org/10.1190/1.2360204.
[46] Cooper, G.R.J. & Whitehead, R.C. (2016). Determining the distance to magnetic sources. Geophysics, 81(2), J39–J48.
[47] Cooper, G.R.J. (2020). Iterative Euler deconvolution. Exploration Geophysics, 52(4), 468–474. https://doi.org/10.1080/08123985.2020.1834381.