[1] Ghiasi, S. M., Hosseini, S. H., Afshar, A., & Abedi, M. (2023). A novel magnetic interpretational perspective on the Charmaleh iron deposit through improved edge detection techniques and 3D inversion approaches. Natural Resources Research, 32(1), 147-170.
[2] Fedi, M. (2007). DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics
72: I1–I11.
https://doi.org/10.1190/1.2399452.
[4] Pham, L.T., Oksum, E., Do, T. D., & Le-Huy, M., (2018). New method for edges detection of magnetic sources using logistic function. Geofizicheskiy Zhurnal, 40(6), 127-135.
[5] Alvandi, A., Deniz Toktay, H., & Nasri, S. (2022). Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures. Acta Geophysica, 70, 659–667.
https://doi.org/10.1007/s11600-022-00750-6.
[6] Al-Bahadily HA, Al-Rahim AM, & Smith RS. (2023). Determination of reactivated regions and faults in the Iraq Southern Desert with the new edge technique, Inverse Tilt Angle of Second-gradients (ITAS). Acta Geophysica 72:1675–1692.
[7] Ekinci YL, Balkaya Ç, Göktürkler G, & Ai H. (2023). 3-D gravity inversion for the basement relief reconstruction through modified success-history-based adaptive differential evolution. Geophysical Journal International 235 (1): 377-400,
https://doi.org/10.1093/gji/ggad222.
[8] Su, K, Ai, H, Alvandi, A, Lyu, C, Wei, X, Qin, Z, Tu, Y, Yan, Y & Nie, Tao. (2024). Hunger Games Search for the elucidation of gravity anomalies with application to geothermal energy investigations and volcanic activity studies, Open Geosciences, 16 (1).
https://doi.org/10.1515/geo-2022-0641.
[9] Cooper, G.R.J. & Cowan, D.R. (2006). Enhancing potential field data using filters based on the local phase. Comput. Geosci.,32, 1585–1591.
[10] Cooper, G.R.J. (2009). Balancing images of potential field data. Geophysics, 74, L17–L20.
[11] Ekinci YL, & Yigitbas E. (2015). Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodinam Acta 27(4):300–319
[12] Eldosouky AM, El-Qassas RAY, Pour AB, Mohamed H, & Sekandari M. (2021). Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv Space Res 68(9):3641–3662.
[13] Eldosouky AM, Pham LT, & Henaish A. (2022). High precision structural mapping using edge filters of potential field and remote sensing data: a case study from Wadi Umm Ghalqa area, South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science 25 (2): 501-513.
[15] Deniz Toktay, H., Prasad, K. N. D., & Alvandi, A. (2024). Edge enhancement of potential field data using the enhanced gradient (EG) filter. Bulletin of the Mineral Research and Exploration, 174(174), 55-66.
https://doi.org/10.19111/bulletinofmre.1386653.
[16] Ai, H., Deniz Toktay, H., Alvandi, A., Pasteka, R., Su, K., & Liu, Q. (2024). Advancing potential field data analysis: the Modified Horizontal Gradient Amplitude method (MHGA). Contributions to Geophysics and Geodesy, 54(2), 119-143.
https://doi.org/10.31577/congeo.2024.54.2.1.
[18] Cordell L, Grauch VJS. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly society of exploration geophysics, p 181–197.
[19] Blakely J. R., & Simpson W.R., (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51(7), 1494-1498.
[20] Nabighian, M.N., (1984). Toward a tree dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49(6), 780-786.
[21] Roest, W.R.J., Verhoef, J., & Pilkington, M., (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.
[23] Alvandi A, Ardestani V.E. (2023) Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography 64: 279–300.
[24] Alvandi A, Su K, Ai H, Ardestani VE, & Lyu C. (2023a). Enhancement of potential field source boundaries using the hyperbolic domain (Gudermannian Function). Minerals 13: 1312.
[25] Miller H. G., & Singh V. (1994). Potential field tilt A new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.
[26] Wijns, C. Perez, C. & Kowalczyk, P., (2005). Theta map: Edge detection in magnetic data. Geophysics, 70, L39-L43.
[27] Tatchum, N.C., Tabod, C. T., Koumetio, F., & Manguelle – Dicoum, E. (2011). A gravity model study for differentiating vertical and dipping geological contacts with application to a Bouguer gravity anomaly over the Foumban shear zone, Cameroon. Geophysica, 37, 33-55.
[28] Ferreira, F.J.F., de Souza, J., Bongiolo, A.B.S., & Castro, L.G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78, 33–31.
https://doi.org/10.1190/geo2011-0441.1.
[29] Ma, G., Huang, D., & Liu, C., (2016). Step-edge detection filters for the interpretation of potential field data. Pure Appl. Geophys. 173 (3), 795–803.
[30] Ibraheem, I.M.; Aladad, H.; Alnaser, M.F. and Stephenson, R. (2021). IAS: A New Novel Phase-Based Filter for Detection of Unexploded Ordnances. Remote Sensing, 13, 4345.
[31] Duch W, & Jankowski N. (1999). Survey of neural transfer functions. Neural Comput Appl 2:163–212
[32] da S. Gomes, G.S., Ludermir, T.B. & Lima, L.M.M.R. (2011). Comparison of new activation functions in neural network for forecasting financial time series. Neural Comput & Applic 20, 417–439.
[33] Farzad, A., Mashayekhi, H. & Hassanpour, H. (2019). A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput & Applic 31, 2507–2521.
[34] Pham LT, Oksum E, Do TD, Le-Huy M, Vu MD, & Nguyen VD. (2019). LAS: a combination of the analytic signal amplitude and the generalized logistic function as a novel edge enhancement of magnetic data. Contrib Geophys Geod 49(4):425–440.
[35] Nasuti, Y., Nasuti, A., & Moghadas, D. (2019). STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176, 827–831.
https://doi.org/10.1007/s00024-018-2016-5.
[36] Alvandi, A., Deniz Toktay, H., & Ardestani, VE. (2023b). Edge detection of geological structures based on a logistic function: a case study for gravity data of the Western Carpathians. International Journal of Mining and Geo-Engineering, 57(3), 267-274. https://doi.org/10.22059/ijmge.2023.353516.595018.
[37] Ekinci YL, Ertekin C, & Yigitbas E. (2013). On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey), Journal of Geophysics and Engineering 10:1742-2132.
[38] Tran KV, & Nguyen TN. (2020). A novel method for computing the vertical gradients of the potential field: application to downward continuation, Geophysical Journal International 220:1316–1329.
[39] Oliveira SP, & Pham LT. (2022). A stable finite difference method based on upward continuation to evaluate vertical derivatives of potential field data. Pure Appl Geophys 179(12):4555–4566.
[40] Hók, J., Šujan, M., & Šipka, F., (2014). Tectonic division of the Western Carpathians: an overview and a new approach. Acta Geol. Slovaca, 6(2), 135-143 (in Slovak, English summary).
[41] Pelech, O., Kušnirák, D., Bošanský, M., Dostál, I., Putiška, R., Hók, J., (2017). The resistivity image of the Upper Cretaceous Horné Belice Group: a case study from the Hranty section (Považský Inovec Mts., Western Carpathians). Acta Geologica Slovaca, 8, 43–58.
[42] Ivanička, J., Havrila, M., Kohút, M., Kováčik, M., Madarás, J., Olšavský, M., Hók, J., Polák, M., Filo, I., Elečko, M., Fordinál, K., Maglay, J., Pristaš, J., Buček, S. & Šimon, L., 2007: Geologická mapa Považského Inovca a jv. časti Trenčianskej kotliny 1: 50 000. Štátny geologický ústav Dionýza Štúra a Ministerstvo životného prostredia, Bratislava.
[43] Šujan, S., Rybár, M., Kováč, M., Bielik, D., Majcin, J., Minár, D., Plašienka, P., Nováková, J., Kotulová, 2021. The polyphase rifting and inversion of the Danube Basin revised Glob. Planet. Chang., 196.
[44] Zahorec P., Pašteka R., Mikuška J., Szalaiová V., Papčo J., Kušnirák D., Pánisová J., Krajňák M., Vajda P., Bielik M., Marušiak I., 2017: Chapter 7 – National Gravimetric Database of
the Slovak Republic. In: Paˇsteka R., Mikuˇska J., Meurers B. (Eds.): Understanding the Bouguer Anomaly: A Gravimetry Puzzle. Elsevier, Amsterdam, 113–125, doi: 10.1016/B978-0-12-812913-5.00006-3.
[46] Cooper, G.R.J. & Whitehead, R.C. (2016). Determining the distance to magnetic sources. Geophysics, 81(2), J39–J48.