Evaluating the relationship of vertical drilling rate with rock properties in the Marble quarry mining

Document Type : Research Paper

Authors

1 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.

2 Lead consultant, Mine stability department, WSP Global Inc., Colorado, USA.

10.22059/ijmge.2024.374224.595160

Abstract

In this research, the relationship of vertical drilling rate (VDR) with rock properties is studied in the marble quarry mining based on the combination of field surveys and laboratory experiments. To achieve this, the VDR is initially measured while drilling at the Malawi marble quarry mine. Then, the physical and mechanics tests are conducted on the core specimens prepared from the collected minor blocks corresponding to the under-drilling mine benches. Parametric study revealed that natural density, dry density, slake durability index, Schmidt hammer rebound, compression wave velocity, point load index, uniaxial compressive strength and modulus of elasticity exhibit an inverse relationship with VDR. Conversely, VDR was found to have a direct relationship with porosity, water content, Los Angeles abrasion, and Poisson ratio. Moreover, it was confirmed that VDR is more correlated with the rock mechanical properties rather than the rock physical features, considering the obtained mean coefficient of determination (COD) of 0.8948 vs. 0.9206. Besides, sensitivity analysis showed that modulus of elasticity and water content are the most and least effective variables on VDR with an influence value of 1.152 and 0.8865, respectively. Additionally, statistical analyses are conducted and optimum empirical quadratic, power, and exponential relations with high accuracy (COD values from 0.861 to 0.987) are proposed to determine the VDR based on each rock property. Finally, comparative analysis is conducted for further verification of the current study. Accordingly, the values of lower and upper limits of COD, and mean relative error are obtained 0.36, 0.9576, and 0.359 for previous researches vs. 0.861, 0.987, and 0.114% for this study. These results confirm the superiority of the current research compared to the similar previous studies.

Keywords

Main Subjects


[1]  Yavuz, A. B., Turk, N., & Koca, M.Y. (2005). Geological parameters affecting the marble production in the quarries along the southern flank of the Menderes Massif, in SW Turkey. Engeering Geology, 80(3–4), 214–241. doi: https://doi.org/10.1016/j.enggeo.2005.05.003
[2]  Yenice, H., Özdoğan, M. V., Özfırat, M. K. (2018). A sampling study on rock properties affecting drilling rate index (DRI). Journal of African Earth Sciences, 141, 1–8. doi: https://doi.org/10.1016/j.jafrearsci.2018.01.015
[3]  Rezaei, M., & Nyazyan, N. (2023). Assessment of effect of rock properties on horizontal drilling rate in marble quarry mining: field and experimental studies. Journal of Minining and Environment, 14(1), 321–339. doi: https://doi.org/10.22044/jme.2023.12595.2287
[4]  Yasar, E., Ranjith, P. G., & Viete, D.R. (2011). An experimental investigation into the drilling and physico-mechanical properties of a rock-like brittle material. Journal of Petroleum Science and Engineering, 76(3–4), 185–193. doi: https://doi.org/10.1016/j.petrol.2011.01.011
[5]  Hoseinie, S. H., Aghababaei, H., & Pourrahimian Y. (2008). Development of a new classification system for assessing of rock mass drillability index (RDi). International Journal of Rock Mechanics and Mining Sciences, 45(1), 1–10. doi: https://doi.org/10.1016/j.ijrmms.2007.04.001
[6] Kahraman, S. (1999). Rotary and percussive drilling prediction using regression analysis. International Journal of Rock Mechanics and Mining Sciences, 36(7) 981–989. doi: https://doi.org/10.1016/S0148-9062(99)00050-9
[7] Kahraman, S., Bilgin, N., & Feridunoglu, C. (2003). Dominant rock properties affecting the penetration rate of percussive drills. International Journal of Rock Mechanics and Mining Sciences, 40(5), 711–723. doi: https://doi.org/10.1016/S1365-1609(03)00063-7
[8] Bilim, N. (2011). Determination of drillability of some natural stones and their association with rock properties. Scientific Research and Essays, 6(2), 382–387. doi: https://doi.org/10.5897/SRE10.878
[9] Okewale, I. A., & Olaleye, B. M. (2013). Correlation of strength properties of limestone deposit in Ogun state, Nigeria with penetration rate using linear regression analysis for engineering applications. International Journal of Engineering Science, 2(7), 18–24.
[10] Demirdag, S., Ugur, N., Efe, T., Akbay, D., & Altindag R. (2014). Variation of vertical and horizontal drilling rates depending on some rock  properties in the  marble quarries. International Journal of Mining Science and Technology, 24(2), 269–273. doi: https://doi.org/10.1016/j.ijmst.2014.01.020
[11] Hoseinie, S. H., Ataei, M., & Aghababaie A. (2014). A laboratory study of rock properties affecting the penetration rate of pneumatic top hammer drills. Journal of Minining and Environment, 5(1), 25–34. doi: https://doi.org/10.22044/JME.2014.216
[12] Ataei, M., KaKaie, R., Ghavidel, M., & Saeidi O. (2015). Drilling rate prediction of an open pit mine using the rock mass drillability index. International Journal of Rock Mechanics and Mining Sciences, 73, 130–138. doi: https://doi.org/10.1016/j.ijrmms.2014.08.006
[13] Kivade,, S., Murthy, C. H., & Vardhan H. (2015). Experimental investigations on penetration rate of percussive drill. Procedia Earth and Planetary Science, 11, 89–99. doi: https://doi.org/10.1016/j.proeps.2015.06.012
[14] Kahraman, S., Balcı, C., Yazıcı, S., & Bilgin N. (2000). Prediction of the penetration rate of rotary blast hole drills using a new drillability index. International Journal of Rock Mechanics and Mining Sciences, 37(5), 729–743. doi: https://doi.org/10.1016/S1365-1609(00)00007-1
[15] Altindag, R. (2002). The evaluation of rock brittleness concept on rotary blast hole drills. Journal of the Southern African Institute of Mining and Metallurgy, 102(1), 61–66. doi: https://hdl.handle.net/10520/AJA0038223X_2763
[16] Stavropoulou, M. (2006). Modeling of small-diameter rotary drilling tests on marbles. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1034–1051. doi: https://doi.org/10.1016/j.ijrmms.2006.03.008
[17] Yarali, O., & Soyer E. (2013). Assessment of relationships between drilling rate index and mechanical properties of rocks. Tunnelling and Underground Space Technology, 33, 46–53. doi: https://doi.org/10.1016/j.tust.2012.08.010
[18] Saeidi, O., Torabi, S. R., Ataei, M., & Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics and Mining Sciences, 68, 55–65. doi: https://doi.org/10.1016/j.ijrmms.2014.02.007
[19] Munoz, H., Taheri, A., & Chanda, E. K. (2016). Rock drilling performance evaluation by an energy dissipation based rock brittleness index. Rock Mechanics and Rock Engeering, 49(8), 3343–3355. doi: https://doi.org/10.1007/s00603-016-0986-0
[20] Capik, M., Yilmaz, A. O., & Yasar, S. (2017). Relationships between the drilling rate index and physicomechanical rock properties. Bulletin of Engineering Geology and the Environment, 76(1), 253–261. doi: https://doi.org/10.1007/s10064-016-0991-2
[21] Derdour, F. Z., Kezzar, M., & Khochemane L. (2018). Optimization of penetration rate in rotary percussive drilling using two techniques: Taguchi analysis and response surface methodology (RMS). Powder Technology, 339(9), 846–853. doi: https://doi.org/10.1016/j.powtec.2018.08.030
[22] Feng, S., Wang, Y., Zhang, G., Zhao, Y., Wang, S., Cao, R., & Xiao E. (2020). Estimation of optimal drilling efficiency and rock strength by using controllable drilling parameters in rotary non-percussive drilling. Journal of Petroleum Science and Engineering, 193, 107376. doi: https://doi.org/10.1016/j.petrol.2020.107376
[23] Kolapo, P. (2021). Investigating the effects of mechanical properties of rocks on specific energy and penetration rate of borehole drilling. Geotechnical and Geological Engineering, 39(11), 1715–1726. doi: https://doi.org/10.1007/s10706-020-01577-y
[24] ISRM. (1978). Suggested method for determining sound velocity. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(2), 53–58. doi: https://doi.org/10.1016/0148-9062(78)91678-9
[25] ISRM. (1979). Suggested method for determining water content, porosity, density, absorption and related properties and swelling and slake durability index properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), 141–156. doi: https://doi.org/10.1016/0148-9062(79)90287-0
[26] ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Kozan Ofset Matbaacılık, Ankara. Doi: https://doi.org/10.2113/gseegeosci.15.1.47
[27] Rezaei, M., & Koureh Davoodi, P. (2021). Determining the relationship between shear wave velocity and physicomechanical properties of rocks. International Journal of Mining and Geo-Engineering, 55(1), 63–70. doi: https://doi.org/10.22059/IJMGE.2019.275851.594782
[28] Seyed Mousavi, S.Z., & Rezaei, M. (2022). Correlation assessment between degradation ratios of UCS and non-destructive properties of rock under freezing-thawing cycles. Geoderma, 428, 116209. doi: https://doi.org/10.1016/j.geoderma.2022.116209
[29] Seyed Mousavi, S.Z., & Rezaei, M. (2023). Assessing the long-term durability and degradation of rocks under freezing-thawing cycles. Geomechanics and Engineering, 34(1), 51–67. doi: https://doi.org/10.12989/gae.2023.34.1.051
[30] Rezaei, M. (2018). Long-term stability analysis of goaf area in longwall mining using minimum potential energy theory. Journal of Minining and Environment, 9(1), 169–182. doi: https://doi.org/10.22044/JME.2017.5950.1408
[31] Rezaei, M., Majdi, A., Hossaini, M. F., & Najmoddini, I. (2018). Study the roof behavior over the longwall gob in long-term condition. Journal of Geology and Mining Research, 10(2), 15–27. doi: https://doi.org/10.5897/JGMR2017.0284
[32] Rezaei, M. (2020). Feasibility of novel techniques to predict the elastic modulus of rocks based on the laboratory data. International Journal of Geotechnical Engineering, 14(1), 25–34. doi: https://doi.org/10.1080/19386362.2017.1397873
[33] Rezaei, M., & Rajabi, M. (2021). Assessment of plastic zones surrounding the power station cavern using numerical, fuzzy and statistical models. Engineering with Computers, 37(2), 1499–1518. doi: https://doi.org/10.1007/s00366-019-00900-3
[34] Asadizadeh, M., & Rezaei, M. (2021). Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach. International Journal of Geotechnical Engineering, 15(10), 1312–1324. doi: https://doi.org/10.1080/19386362.2019.1596610
[35] Sayadi, A.R., Tavassoli, S.M.M., Monjezi, M., & Rezaei, M. (2014). Application of neural networks to predict net present value in mining projects. Arabian Journal of Geosciences, 7(3), 1067–1072. https://doi.org/10.1007/s12517-012-0750-z
[36] Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., & Tatham, R.L. (2010). Multivariate Data Analysis. 7th ed. New York: Pearson. doi: https://doi.org/10.1080/19386362.2019.1596610