[1] Yavuz, A. B., Turk, N., & Koca, M.Y. (2005). Geological parameters affecting the marble production in the quarries along the southern flank of the Menderes Massif, in SW Turkey.
Engeering Geology, 80(3–4), 214–241. doi:
https://doi.org/10.1016/j.enggeo.2005.05.003
[3] Rezaei, M., & Nyazyan, N. (2023). Assessment of effect of rock properties on horizontal drilling rate in marble quarry mining: field and experimental studies.
Journal of Minining and Environment, 14(1), 321–339. doi:
https://doi.org/10.22044/jme.2023.12595.2287
[4] Yasar, E., Ranjith, P. G., & Viete, D.R. (2011). An experimental investigation into the drilling and physico-mechanical properties of a rock-like brittle material.
Journal of Petroleum Science and Engineering, 76(3–4), 185–193. doi:
https://doi.org/10.1016/j.petrol.2011.01.011
[5] Hoseinie, S. H., Aghababaei, H., & Pourrahimian Y. (2008). Development of a new classification system for assessing of rock mass drillability index (RDi).
International Journal of Rock Mechanics and Mining Sciences, 45(1), 1–10. doi:
https://doi.org/10.1016/j.ijrmms.2007.04.001
[7] Kahraman, S., Bilgin, N., & Feridunoglu, C. (2003). Dominant rock properties affecting the penetration rate of percussive drills.
International Journal of Rock Mechanics and Mining Sciences, 40(5), 711–723. doi:
https://doi.org/10.1016/S1365-1609(03)00063-7
[8] Bilim, N. (2011). Determination of drillability of some natural stones and their association with rock properties.
Scientific Research and Essays, 6(2), 382–387. doi:
https://doi.org/10.5897/SRE10.878
[9] Okewale, I. A., & Olaleye, B. M. (2013). Correlation of strength properties of limestone deposit in Ogun state, Nigeria with penetration rate using linear regression analysis for engineering applications. International Journal of Engineering Science, 2(7), 18–24.
[10] Demirdag, S., Ugur, N., Efe, T., Akbay, D., & Altindag R. (2014). Variation of vertical and horizontal drilling rates depending on some rock properties in the marble quarries. International
Journal of Mining Science and Technology, 24(2), 269–273. doi:
https://doi.org/10.1016/j.ijmst.2014.01.020
[11] Hoseinie, S. H., Ataei, M., & Aghababaie A. (2014). A laboratory study of rock properties affecting the penetration rate of pneumatic top hammer drills.
Journal of Minining and Environment, 5(1), 25–34. doi:
https://doi.org/10.22044/JME.2014.216
[12] Ataei, M., KaKaie, R., Ghavidel, M., & Saeidi O. (2015). Drilling rate prediction of an open pit mine using the rock mass drillability index.
International Journal of Rock Mechanics and Mining Sciences, 73, 130–138. doi:
https://doi.org/10.1016/j.ijrmms.2014.08.006
[13] Kivade,, S., Murthy, C. H., & Vardhan H. (2015). Experimental investigations on penetration rate of percussive drill.
Procedia Earth and Planetary Science, 11, 89–99. doi:
https://doi.org/10.1016/j.proeps.2015.06.012
[14] Kahraman, S., Balcı, C.,
Yazıcı, S., & Bilgin N. (2000). Prediction of the penetration rate of rotary blast hole drills using a new drillability index.
International Journal of Rock Mechanics and Mining Sciences, 37(5), 729–743. doi:
https://doi.org/10.1016/S1365-1609(00)00007-1
[15] Altindag, R. (2002). The evaluation of rock brittleness concept on rotary blast hole drills.
Journal of the Southern African Institute of Mining and Metallurgy, 102(1), 61–66. doi:
https://hdl.handle.net/10520/AJA0038223X_2763
[17] Yarali, O., & Soyer E. (2013). Assessment of relationships between drilling rate index and mechanical properties of rocks.
Tunnelling and Underground Space Technology, 33, 46–53. doi:
https://doi.org/10.1016/j.tust.2012.08.010
[18] Saeidi, O., Torabi, S. R., Ataei, M., & Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines.
International Journal of Rock Mechanics and Mining Sciences, 68, 55–65. doi:
https://doi.org/10.1016/j.ijrmms.2014.02.007
[19] Munoz, H., Taheri, A., & Chanda, E. K. (2016). Rock drilling performance evaluation by an energy dissipation based rock brittleness index. Rock Mechanics and Rock Engeering, 49(8), 3343–3355. doi: https://doi.org/10.1007/s00603-016-0986-0
[20] Capik, M., Yilmaz, A. O., & Yasar, S. (2017). Relationships between the drilling rate index and physicomechanical rock properties. Bulletin of Engineering Geology and the Environment, 76(1), 253–261. doi: https://doi.org/10.1007/s10064-016-0991-2
[21] Derdour, F. Z., Kezzar, M., & Khochemane L. (2018). Optimization of penetration rate in rotary percussive drilling using two techniques: Taguchi analysis and response surface methodology (RMS).
Powder Technology, 339(9), 846–853. doi:
https://doi.org/10.1016/j.powtec.2018.08.030
[22] Feng, S., Wang, Y., Zhang, G., Zhao, Y., Wang, S., Cao, R., & Xiao E. (2020). Estimation of optimal drilling efficiency and rock strength by using controllable drilling parameters in rotary non-percussive drilling.
Journal of Petroleum Science and Engineering, 193, 107376. doi:
https://doi.org/10.1016/j.petrol.2020.107376
[23] Kolapo, P. (2021). Investigating the effects of mechanical properties of rocks on specific energy and penetration rate of borehole drilling. Geotechnical and Geological Engineering, 39(11), 1715–1726. doi: https://doi.org/10.1007/s10706-020-01577-y
[25] ISRM. (1979). Suggested method for determining water content, porosity, density, absorption and related properties and swelling and slake durability index properties.
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), 141–156. doi:
https://doi.org/10.1016/0148-9062(79)90287-0
[29] Seyed Mousavi, S.Z., & Rezaei, M. (2023). Assessing the long-term durability and degradation of rocks under freezing-thawing cycles. Geomechanics and Engineering, 34(1), 51–67. doi: https://doi.org/10.12989/gae.2023.34.1.051
[30] Rezaei, M. (2018). Long-term stability analysis of goaf area in longwall mining using minimum potential energy theory.
Journal of Minining and Environment, 9(1), 169–182. doi:
https://doi.org/10.22044/JME.2017.5950.1408
[31] Rezaei, M., Majdi, A., Hossaini, M. F., & Najmoddini, I. (2018). Study the roof behavior over the longwall gob in long-term condition.
Journal of Geology and Mining Research, 10(2), 15–27. doi:
https://doi.org/10.5897/JGMR2017.0284
[32] Rezaei, M. (2020). Feasibility of novel techniques to predict the elastic modulus of rocks based on the laboratory data.
International Journal of Geotechnical Engineering, 14(1), 25–34. doi:
https://doi.org/10.1080/19386362.2017.1397873
[33] Rezaei, M., & Rajabi, M. (2021). Assessment of plastic zones surrounding the power station cavern using numerical, fuzzy and statistical models. Engineering with Computers, 37(2), 1499–1518. doi: https://doi.org/10.1007/s00366-019-00900-3
[34] Asadizadeh, M., & Rezaei, M. (2021). Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach. International Journal of Geotechnical Engineering, 15(10), 1312–1324. doi: https://doi.org/10.1080/19386362.2019.1596610
[35] Sayadi, A.R., Tavassoli, S.M.M., Monjezi, M., & Rezaei, M. (2014). Application of neural networks to predict net present value in mining projects. Arabian Journal of Geosciences, 7(3), 1067–1072. https://doi.org/10.1007/s12517-012-0750-z
[36] Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., & Tatham, R.L. (2010). Multivariate Data Analysis. 7th ed. New York: Pearson. doi: https://doi.org/10.1080/19386362.2019.1596610