[1] Ober, J. A., (1997), Strontium. US Geol Survey Minerals Inf Circ, 6 p.
[2] Hanor, J. S. (2000). Barite–celestine geochemistry and environments of formation. Reviews in Mineralogy and Geochemistry, 40(1), 193-275.
[3] Tekin, E. (2001). Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10(1), 35-49.
[4] González-Sánchez, F., Camprubí, A., González-Partida, E., Puente-Solís, R., Canet, C., Centeno-García, E., & Atudorei, V. (2009). Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb–Zn deposits in the MVT province of northeastern Mexico. Mineralium Deposita, 44, 343-361.
[5] Zhu, Q., Cook, N. J., Xie, G., Ciobanu, C. L., Gilbert, S. E., Wade, B., & Xu, J. (2022). Textural and geochemical analysis of celestine and sulfides constrain Sr-(Pb-Zn) mineralization in the Shizilishan deposit, eastern China. Ore Geology Reviews, 144, 104814.
[6] Hosseini, S. H., Habibian Dehkordi, B., Abedi, M., & Oskooi, B. (2021). Implications for a geothermal reservoir at Abgarm, Mahallat, Iran: Magnetic and magnetotelluric signatures. Natural Resources Research, 30, 259-272.
[7] Talebi, M. A., Hosseini, S. H., Abedi, M., & Moradzadeh, A. (2023). 3D inverse modeling of electrical resistivity and chargeability data through unstructured meshing, a case study for travertine exploration. International Journal of Mining and Geo-Engineering, 57(2), 131-140.
[8] Lyatsky, H. (2010). Magnetic and gravity methods in mineral exploration: The value of well-rounded geophysical skills. Recorder (Canadian Society of Exploration Geophysics), 30-35.
[9] Afshar, A., Norouzi, G. H., Moradzadeh, A., & Riahi, M. A. (2018). Application of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study: Garmab mine, Semnan, Iran. Journal of Applied Geophysics, 159, 586-596.
[10] Essa, K. S., & Munschy, M. (2019). Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128, 1-16.
[11] Layade, G. O., Edunjobi, H. O., Makinde, V., & Bada, B. S. (2021). Application of Forward and Inverse Modelling to High-Resolution Gravity Data for Mineral Exploration. Journal of the Earth and Space Physics, 46(4).
[12] Dubey, C. P., & Roy, A. (2023). Joint inversion of gravity and gravity gradient and its application to mineral exploration. J. Ind. Geophys. Union, 27(1), 1-18.
[13] Yang, Y., & Li, Y. (2023). Ore-controlling structures of the Qingchengzi Pb-Zn-Au-Ag orefield, northeastern China and significance for deep ore prospecting: Revealed from gravity and magnetic anomalies. Ore Geology Reviews, 156, 105376.
[14] Sadraeifar, B., & Abedi, M. (2024). 3D inversion of gravity data using mixed Lp–Lq norm regularization, a case study for potash targeting at the Ghare-Aghaj deposit in Iran. Carbonates and Evaporites, 39(3), 66.
[15] Afshar, A., Norouzi, G. H., Moradzadeh, A., Riahi, M. A., & Porkhial, S. (2017). Curie point depth, geothermal gradient and heat-flow estimation and geothermal anomaly exploration from integrated analysis of aeromagnetic and gravity data on the Sabalan Area, NW Iran. Pure and Applied Geophysics, 174, 1133-1152.
[16] Afshar, A., Norouzi, G. H., & Moradzadeh, A. (2023). Exploring Geothermal Potential through Multi-Modal Geophysical Data Integration: Gravity, Magnetic, and Magnetotelluric Prospecting. International Journal of Mining and Geo-Engineering, 57(4), 427-434. doi: 10.22059/ijmge.2023.364057.595093.
[17] Ariza-Rodríguez, N., Rodríguez-Navarro, A. B., Calero de Hoces, M., Martin, J. M., & Muñoz-Batista, M. J. (2022). Chemical and mineralogical characterization of montevive celestine mineral. Minerals, 12(10), 1261.
[18] Gao, Y., Sun, Y., Wang, D., Chen, B., & Gu, W. (2023). Geological and Geochemical Constraints on the Origin of the Sr Mineralization in Huayingshan Ore District, Chongqing, South China. Minerals, 13(2), 279.
[19] Aghanabati, S. A. (2013). Geology of Iran and neighboring countries. Geological Survey of Iran, 710.
[20] Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394-408.
[21] Ghanbarifar, S., Ghiasi, S. M., Hosseini, S. H., Abedi, M., Oskooi, B., & Smirnov, M. Y. (2024). Geoelectrical image of the Sabalan geothermal reservoir from magnetotelluric studies. Journal of Applied Geophysics, 224, 105359.
[22] Ghanbarifar, S., Hosseini, S. H., Abedi, M., & Afshar, A. (2024). A dynamic window-based Euler depth estimation algorithm for potential field geophysical data.
[23] Ghanbarifar, S., Hosseini, S. H., Ghiasi, S. M., Abedi, M., & Afshar, A. (2023). Joint Euler deconvolution for depth estimation of potential field magnetic and gravity data. International Journal of Mining and Geo-Engineering.
[24] Huang, L., Zhang, H.L., Li, C.F. et al. (2022). Ratio-Euler deconvolution and its applications. Geophysical Prospecting, 70, 1016–1032. https://doi.org/10.1111/1365-2478.13160
[25] Salem, A., & Ravat, D. (2003). A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data. Geophysics, 68, 1952–1961.
https://doi.org/10.1190/1.1635379
[26] Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31-37.
[27] Ghiasi, S. M., Hosseini, S. H., Afshar, A., & Abedi, M. (2023). A novel magnetic interpretational perspective on Charmaleh iron deposit through improved edge detection techniques and 3D inversion approaches. Natural Resources Research, 32(1), 147-170.
[28] Hosseini, S. H., Oskooi, B., Ghanbarifar, S., Ghiasi, S. M., Abedi, M., & Smirnov, M. Y. (2024). 2D sharp boundary inversion to determine tectonic and geological features of geothermal fields through the magnetotelluric method: case study of the Mahallat reservoir in Iran. Bulletin of Geophysics and Oceanography.
[29] Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of applied Geophysics, 32(2-3), 213-217.
[30] Luo, Y., Wang, M., Luo, F., & Tian, S. (2011). Direct Analytic Signal Interpretation of Potential Field Data Using 2‐D Hilbert Transform. Chinese Journal of Geophysics, 54(4), 551-559.
[31] Salem, A., Ravat, D., Gamey, T. J., & Ushijima, K. (2002). Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics, 49(4), 231-244.
[32] Hinze, W. J., von Frese, R. R., & Saad, A. H. (2013). Gravity and magnetic exploration: Principles, practices, and applications. Cambridge University Press.
[33] Jimenez-Munt, I., Fernandez, M., Saura, E., Vergés, J., & García-Castellanos, D. (2012). 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia—Eurasia collision (Iran). Geophysical Journal International, 190(3), 1311-1324.
[34] Nettleton, L. L. (1939). Determination of density for reduction of gravimeter observations. Geophysics, 4(3), 176-183.
[35] Guo, L., Meng, X., Chen, Z., Li, S., & Zheng, Y. (2013). Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51, 247-254.
[36] Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press.
[37] Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (Vol. 1). Cambridge university press. This classic textbook provides a comprehensive overview of gravimetry and other geophysical methods.
[38] UBC Geophysical Inversion Facility. (2005). GRAV3D Manual: A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. University of British Columbia.