The Innovative Application of Gravity Data Inversion and Geophysical Edge-Detection for Celestine Exploration: A Case Study at the Siraf Mine, Semnan Province, Iran

Document Type : Research Paper

Authors

1 Institute of Geophysics, University of Tehran, Tehran, Iran.

2 Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

3 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

10.22059/ijmge.2024.380299.595185

Abstract

This study represents a pioneering application of gravimetric methods for the exploration of celestine mineralization. Through the inversion of gravity data, we identified areas with significant density variations indicative of potential mineral deposits, particularly those with high celestine content. Utilizing depth estimation techniques such, as Euler deconvolution and MNTHD and MNTDR filters, we accurately delineated the boundaries and depths of anomalies, generally within 5 meters of the surface, with specific validation in celestine-rich regions. The three-dimensional model derived from data inversion indicates that large-scale mineralization is improbable. However, with a density cutoff of 1 g/cm³, the potential for several small veins is apparent. Due to the inherent non-uniqueness and ambiguity in geophysical modelling, the precise assessments of reserves and ore grades will require systematic exploratory drilling. The gravity prospect maps and three-dimensional density model have partially detected the anomalies with practical constraints, such as challenging topography and disturbed geological conditions impacting further measurements. To advance exploration, we recommend specific drilling coordinates and additional geophysical surveys with a 5-meter grid spacing, contingent on favourable initial drilling results. This study underscores the effectiveness of gravimetric methods in identifying celestine mineralization and suggests that these techniques may enhance exploration strategies and methodologies.

Keywords

Main Subjects


 
[1] Ober, J. A., (1997), Strontium. US Geol Survey Minerals Inf Circ, 6 p.
[2] Hanor, J. S. (2000). Barite–celestine geochemistry and environments of formation. Reviews in Mineralogy and Geochemistry, 40(1), 193-275.
[3] Tekin, E. (2001). Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10(1), 35-49.
[4] González-Sánchez, F., Camprubí, A., González-Partida, E., Puente-Solís, R., Canet, C., Centeno-García, E., & Atudorei, V. (2009). Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb–Zn deposits in the MVT province of northeastern Mexico. Mineralium Deposita, 44, 343-361.
[5] Zhu, Q., Cook, N. J., Xie, G., Ciobanu, C. L., Gilbert, S. E., Wade, B., & Xu, J. (2022). Textural and geochemical analysis of celestine and sulfides constrain Sr-(Pb-Zn) mineralization in the Shizilishan deposit, eastern China. Ore Geology Reviews, 144, 104814.
[6] Hosseini, S. H., Habibian Dehkordi, B., Abedi, M., & Oskooi, B. (2021). Implications for a geothermal reservoir at Abgarm, Mahallat, Iran: Magnetic and magnetotelluric signatures. Natural Resources Research, 30, 259-272.
[7] Talebi, M. A., Hosseini, S. H., Abedi, M., & Moradzadeh, A. (2023). 3D inverse modeling of electrical resistivity and chargeability data through unstructured meshing, a case study for travertine exploration. International Journal of Mining and Geo-Engineering, 57(2), 131-140.
[8] Lyatsky, H. (2010). Magnetic and gravity methods in mineral exploration: The value of well-rounded geophysical skills. Recorder (Canadian Society of Exploration Geophysics), 30-35.
[9] Afshar, A., Norouzi, G. H., Moradzadeh, A., & Riahi, M. A. (2018). Application of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study: Garmab mine, Semnan, Iran. Journal of Applied Geophysics, 159, 586-596.
[10] Essa, K. S., & Munschy, M. (2019). Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128, 1-16.
[11] Layade, G. O., Edunjobi, H. O., Makinde, V., & Bada, B. S. (2021). Application of Forward and Inverse Modelling to High-Resolution Gravity Data for Mineral Exploration. Journal of the Earth and Space Physics, 46(4).
[12] Dubey, C. P., & Roy, A. (2023). Joint inversion of gravity and gravity gradient and its application to mineral exploration. J. Ind. Geophys. Union, 27(1), 1-18.
[13] Yang, Y., & Li, Y. (2023). Ore-controlling structures of the Qingchengzi Pb-Zn-Au-Ag orefield, northeastern China and significance for deep ore prospecting: Revealed from gravity and magnetic anomalies. Ore Geology Reviews156, 105376.
[14] Sadraeifar, B., & Abedi, M. (2024). 3D inversion of gravity data using mixed Lp–Lq norm regularization, a case study for potash targeting at the Ghare-Aghaj deposit in Iran. Carbonates and Evaporites, 39(3), 66.
[15] Afshar, A., Norouzi, G. H., Moradzadeh, A., Riahi, M. A., & Porkhial, S. (2017). Curie point depth, geothermal gradient and heat-flow estimation and geothermal anomaly exploration from integrated analysis of aeromagnetic and gravity data on the Sabalan Area, NW Iran. Pure and Applied Geophysics, 174, 1133-1152.
[16] Afshar, A., Norouzi, G. H., & Moradzadeh, A. (2023). Exploring Geothermal Potential through Multi-Modal Geophysical Data Integration: Gravity, Magnetic, and Magnetotelluric Prospecting. International Journal of Mining and Geo-Engineering, 57(4), 427-434. doi: 10.22059/ijmge.2023.364057.595093.
[17] Ariza-Rodríguez, N., Rodríguez-Navarro, A. B., Calero de Hoces, M., Martin, J. M., & Muñoz-Batista, M. J. (2022). Chemical and mineralogical characterization of montevive celestine mineral. Minerals, 12(10), 1261.
[18] Gao, Y., Sun, Y., Wang, D., Chen, B., & Gu, W. (2023). Geological and Geochemical Constraints on the Origin of the Sr Mineralization in Huayingshan Ore District, Chongqing, South China. Minerals, 13(2), 279.
[19] Aghanabati, S. A. (2013). Geology of Iran and neighboring countries. Geological Survey of Iran, 710.
[20] Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394-408.
[21] Ghanbarifar, S., Ghiasi, S. M., Hosseini, S. H., Abedi, M., Oskooi, B., & Smirnov, M. Y. (2024). Geoelectrical image of the Sabalan geothermal reservoir from magnetotelluric studies. Journal of Applied Geophysics, 224, 105359.
[22] Ghanbarifar, S., Hosseini, S. H., Abedi, M., & Afshar, A. (2024). A dynamic window-based Euler depth estimation algorithm for potential field geophysical data.
[23] Ghanbarifar, S., Hosseini, S. H., Ghiasi, S. M., Abedi, M., & Afshar, A. (2023). Joint Euler deconvolution for depth estimation of potential field magnetic and gravity data. International Journal of Mining and Geo-Engineering.
[24] Huang, L., Zhang, H.L., Li, C.F. et al. (2022). Ratio-Euler deconvolution and its applications. Geophysical Prospecting, 70, 1016–1032. https://doi.org/10.1111/1365-2478.13160
[25] Salem, A., & Ravat, D. (2003). A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data. Geophysics, 68, 1952–1961. https://doi.org/10.1190/1.1635379
[26] Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31-37.
[27] Ghiasi, S. M., Hosseini, S. H., Afshar, A., & Abedi, M. (2023). A novel magnetic interpretational perspective on Charmaleh iron deposit through improved edge detection techniques and 3D inversion approaches. Natural Resources Research, 32(1), 147-170.
[28] Hosseini, S. H., Oskooi, B., Ghanbarifar, S., Ghiasi, S. M., Abedi, M., & Smirnov, M. Y. (2024). 2D sharp boundary inversion to determine tectonic and geological features of geothermal fields through the magnetotelluric method: case study of the Mahallat reservoir in Iran. Bulletin of Geophysics and Oceanography.
[29] Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of applied Geophysics, 32(2-3), 213-217.
[30] Luo, Y., Wang, M., Luo, F., & Tian, S. (2011). Direct Analytic Signal Interpretation of Potential Field Data Using 2‐D Hilbert Transform. Chinese Journal of Geophysics, 54(4), 551-559.
[31] Salem, A., Ravat, D., Gamey, T. J., & Ushijima, K. (2002). Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics, 49(4), 231-244.
[32] Hinze, W. J., von Frese, R. R., & Saad, A. H. (2013). Gravity and magnetic exploration: Principles, practices, and applications. Cambridge University Press.
[33] Jimenez-Munt, I., Fernandez, M., Saura, E., Vergés, J., & García-Castellanos, D. (2012). 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia—Eurasia collision (Iran). Geophysical Journal International, 190(3), 1311-1324.
[34] Nettleton, L. L. (1939). Determination of density for reduction of gravimeter observations. Geophysics, 4(3), 176-183.
[35] Guo, L., Meng, X., Chen, Z., Li, S., & Zheng, Y. (2013). Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51, 247-254.
[36] Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press.
[37] Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (Vol. 1). Cambridge university press. This classic textbook provides a comprehensive overview of gravimetry and other geophysical methods.
[38] UBC Geophysical Inversion Facility. (2005). GRAV3D Manual: A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. University of British Columbia.