Characterization and beneficiation potential for valuable heavy minerals from Wadi Ibib stream sediments, southern coast of the Red sea, Egypt

Document Type : Research Paper

Authors

Nuclear Materials Authority, Maadi, Cairo, Egypt.

10.22059/ijmge.2024.367652.595118

Abstract

Economic heavy minerals (EHMs) in the Quaternary Stream Sediments of Wadi Ibib were characterized mineralogically and chemically via optical microscopy, grain size distribution analysis, heavy liquid separation, x-ray diffraction (XRD), energy-dispersive X-ray fluorescence (EDXRF), and scanning electron microscopy (SEM). Information gathered from characterization studies confirmed that the heavy mineral content (specific gravity more than 2.89) in Ibib samples ranged between 8.18 and 17.52% by mass, with an average of about 12.56% mass. EDXRF data analyses also manifested that the content of ilmenite in Ibib sample reaches 0.2%, zircon 0.08%, rutile 0.07%, leucoxene 0.06%, almandine garnet 0.022%, cassiterite 0.007%, xenotime 0.006%, monazite 0.0008%, and magnetite is about 0.29%, with high proportion of heavy silicates.
With regard to raising the grade of the EHMs, heavy mineral concentrate was obtained through a rougher step on Wilfley Shaking Table No. 13, and then it was followed by two scavenging steps for highest recovery obtaining. The gravimetric concentration steps succeeded in raising the heavy mineral assay from 12.17% to 53.41% with recovery of 80.42% in a yield of 20.38%. Finally, magnetic separation operations were conducted via low- and high-intensity magnetic separators at different intensities in an attempt to separate and obtain clean concentrates of EHMs to be ready for use in various modern technology industries.

Keywords

Main Subjects


[1] H. G. Dill, Heavy minerals from ore guide to the deposit. Applied Earth Science 125(2) (2016) 80–81. doi:10.1080/03717453.2016.1166622
[2] M. Dieye, M. Lichtervelde, A. Ndiaye, M. Gueye, S. Blancher, Mineralogical Characterization of Heavy Mineral Concentrates from Senegalese Great Cost by Using Qemscan and SEM. International Journal of Geosciences 11(2020) 800-817. doi: 10.4236/ijg.2020.1112041.
[3] M. Abdel-Aal, Abdel-Karim, M. Zaid, M. I. Moustafa, M. G. Barakat, Mineralogy, chemistry and radioactivity of the heavy minerals in the black sands, along the northern coast of Egypt. Journal of African Earth Sciences 123 (2016) 10-20, ISSN 1464-343X, https://doi.org/10.1016/j.jafrearsci.2016.07.005.
[4] A. Papadopoulos, I.T. Tzifas, H. Tsikos, The Potential for REE and Associated Critical Metals in Coastal Sand (Placer) Deposits of Greece: A Review. Minerals 9 (2019) 469. https://doi.org/10.3390/min9080469
[5] D. Singh, S. Basu, B.R. Mishra, Development of Flow Sheets to Recover Critical Minerals from Brahmagiri Lean-Grade Beach Sand Deposit'. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00514-6
[6] S. Routray, R. Swain, R.B. Rao, A Study on Heavy Mineral Distribution Pattern Along Brahmagiri Coast of Odisha, India and Its Beneficiation to Recover Industrial Minerals. In: Pandey, P.M., Kumar, P., Sharma, V. (eds) Advances in Production and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore (2021) https://doi.org/10.1007/978-981-15-5519-0_22
[7] A. Lakshmi Venkatesh, K.S.N.  Reddy, K.  Bangaku Naidu, C. Aruna, N. Ankita Varma, K. Sandeep Kumar, Heavy Minerals Studies of Coastal Sands from Bavanapadu to Kalingapatnam, Andhra Pradesh, East Coast of India. In: Jayaraju, N., Sreenivasulu, G., Madakka, M., Manjulatha, M. (eds) Coasts, Estuaries and Lakes. Springer, Cham. (2023) https://doi.org/10.1007/978-3-031-21644-2_11
[8] M. Fawzy, M. Abu El Ghar, M. Gaafar, I. El shafey, M. Diab, A. Hussein, Diit Quaternary Stream Sediments, Southern Coast of the Red Sea, Egypt: Potential Source of Ilmenite, Magnetite, Zircon, and Other Economic Heavy Minerals. Mining, Metallurgy & Exploration (2022a) 39:655–667.
[9] M. Fawzy, M. Abu El Ghar, M. Gaafar, I. El shafey, M. Diab, A. Hussein, Recovery of valuable heavy minerals via gravity and magnetic separation operations from Diit Quaternary stream sediments, southern coast of the Red Sea, Egypt. J. Phys.: Conf. Ser. 2305 012020 (2022b). doi:10.1088/1742-6596/2305/1/012020
[10] M. Diab, M. Abu El Ghar, M. Gaafar, A. El shafey, A. Hussein, M. Fawzy, Potentiality of Physical Upgrading for Valuable Heavy Minerals from Sermatai Area, Egypt. Journal of Mining and Environment (JME) 13(1) (2022) 15-32. DOI:10.22044/jme.2022.11479.2136
[11] I. Gaafar, M. Fawzy, M. Diab, M. Hanfi,  Radiological Hazards Assessment of Stream sediments at Wadi Diit and Wadi Sermatai area, Southern Eastern Desert, Egypt. Journal of Radioanalytical and Nuclear Chemistry 331 (2022) 1795–1806 https://doi.org/10.1007/s10967-022-08247-8
[12] G. Jones, Mineral Sands: An Overview of the Industry; Iluka Company: Perth, Australia, (2008) p. 26.
[13] B. Gosen, D. Bleiwas, G. Bedinger, K. Ellefsen, A. Shah, Coastal deposits of heavy mineral sands: Global significance and US resources. Min. Eng. 68 (2016) 36–43.
[14] C. Caroline, Gonçalves, F. Paulo, Braga. Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals 9 (2019) 176; doi:10.3390/min9030176
[15] J. Sampaio, A. Luz, R. Alcantera, L. Araújo, Minerais Pesados Millennium. Usinas de Beneficiamento de Minérios no Brasil; Sampaio, J.A., Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, (2001) p. 233.
[16] J. Schnellrath, M. Monte, A. Veras, H. Júnior, C. Figueiredo, Minerais Pesados INB. Usinas de Beneficiamento de Minérios no Brasil; Sampaio, J.A., Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, (2001) p. 189.
[17] S. Rosental, Terras Raras, Rochas e Minerais Industriais Usos e Especificações; Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, (2005) p. 727.
[18] T. Laxmi, S. Srikant, D. Rao, R. Rao, Beneficiation studies on recovery and in-depth characterization of ilmenite from red sediments of badlands topography of Ganjam District, Odisha, India. Int. J. Min. Sci. Technol. 23 (2013) 725–731. [CrossRef]
[19] S. Routray, R. Rao, Beneficiation and Characterization of Detrital Zircons from Beach Sand and RedSediments in India. J. Miner. Mater. Charact. Eng. 10 (2011) 1409–1428.
[20] S. Routray, T. Laxmi, R. Rao, Alternate Approaches to Recover Zinc Mineral Sand from Beach Alluvial Placer Deposits and Bandlands Topography for Industrial Applications. Int. J. Mater. Mech. Eng. 2 (2013) 80–90.
[21] E. Tranvik, M. Becker, B. Palsson, J. Franzidis, D. Bradshaw, Towards cleaner production–Using floatation to recover monazite from a heavy mineral sands zircon waste stream. Miner. Eng. 101 (2017) 30–39.
[22] M. Fawzy, Surface characterization and froth flotation of fergusonite from Abu Dob pegmatite using a combination of anionic and nonionic collectors. Physicochem. Probl. Miner. Process., 54(3) (2018) 677-687. http://dx.doi.org/10.5277/ppmp1865.
[23] M. Fawzy, Separation of fine beryl from quartz via magnetic carriers by the aiding of non-ionic surfactant Physicochem. Probl. Miner. Process., 57(2) (2021a) 14-23. DOI: 10.37190/ppmp/132329
[24] M. Fawzy, Flotation separation of dravite from phlogopite using a combination of anionic/nonionic surfactants. Physicochem. Probl. Miner. Process., 57(4)  (2021b) 87-95. DOI: 10.37190/ppmp/138587
[25] EGSMA Egyptian geological survey and mining; geologic map of the Marsa Shaab, quadrangle, Egypt, scale 1:250 0000. (2002) Geol Surv Cairo, Egypt
[26] J. Rydberg J Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples, J Paleolimnol 52(2014) 265–276. https:// doi. org/ 10. 1007/ s10933- 014- 9792-4
[27] W-Z Zhao, B. Lu, J-B Yu, B-B Zhang, Y. Zhang, Determination of sulfur in soils and stream sediments by wavelength dispersive X-ray fluorescence spectrometry. Microchem J 156 (2020)104840. https:// doi. org/ 10. 1016/j. microc. 2020. 104840
[28] M. Zhang, B. Whiten, Determining mineral composition from assays. Proceedings of the International Heavy Mineral Conference. Australian Institute of Mining and Metallurgy, Melbourne, (2001) 81-86.
[29] R. Raju, G. Ravi, K. Shivkumar, L. Reddy, Rohatgi, WDXRFS method for quantification of heavy minerals in sand samples. Jour. GEOL. SOC. INDIA, 66 (2005) Oct. pp. 401-406.
[30] M. Rahman, M. Zaman, P. Biswas, S. Sultana, P. Nandy, Physical separation for upgradation of valuable minerals: a study on sands of the Someswari river. Bangladesh J. Sci. Ind. Res. 50(1) (2015) 53-58.
[31] Yu, Charley, Cheng, Jing-Jy, L. Jones, Y. Wang, Faillace, Ernesto, Loureiro, Celso, Y. Chia, Data collection handbook to support modeling the impacts of radioactive material in soil. (2023) 10.2172/10162250.