The prediction of heavy metal pollution in gemstone mines using contamination variables

Document Type : Research Paper

Authors

1 Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.

2 Department of Mining Engineering, Colorado School of Mines, Golden, Colorado, USA.

3 Department of GIS and Geoenvironmental, Western Illinois University, USA.

10.22059/ijmge.2024.360223.595068

Abstract

Although contamination variables have been widely employed in evaluating heavy metal pollution, the potential for their use to predict heavy metal pollution levels in the mining sector using regression analysis has been overlooked. Therefore, this study aimed to use contamination variables to monitor metal pollution level and its health hazards by adopting multiple regression analysis at the Ikinyinwa gemstone mine site. A systematic grid method of sampling was adopted to obtain soil samples from mining areas (MA) and non-mining areas (NMA). 15 soil samples were collected from MA and five samples from NMA at the depths of 0–20 cm. The samples were prepared and aggregated into rice bags, well labelled and sealed at the Central Laboratory, FUTA, before being sent to the LA-ICP-MS Laboratory at the Colorado School of Mines, Golden Colorado, USA for metal analysis. The results showed that there were higher concentrations of As (7.51±0.59) and Cd (0.65±0.26) in MA compared to NMA and the world average standard. On the contamination factor (Cf), the average value of Pb (0.44) was categorised as low (Cf < 1) contamination, while Ni (3.06) was classified as considerable (3 ≤ Cf < 6) contamination, and the others were categorized as moderate (1 < CF < 3) contamination. Based on the degree of contamination (Cdeg), Ni (46.05), As (36.02), and Cd (34.13) were classified as very high (32 ≥ Cdeg) contamination, while Pb (0.681) was classified as low (Cdeg < 8) contamination. The pollution load indices (PLI) for samples SS4, SS5, SS7, SS11, and SS13 were less than one (PLI<1) and classified as unpolluted. The regression analysis established that Cf and PLI variables are positive and significant predictors of heavy metal pollution at the investigated site. It was predicted that for every unit increase in Cf and PLI, the pollution level of heavy metals would increase by 0.138 and 0.578, respectively.

Keywords

Main Subjects


[1]         Saliou, B. M., & Huang, X. W. (2020). A Critical analysis of gold prospecting methods. International Journal of Geosciences 11(2):15-24. https://doi.org/10.4236/ijg.2020.112002
[2]         Olayiwola, O. A., & Ozemoje, P. O (2015). Environmental pollution survey of xenobiotics in soil, plant and water around a Steel Rolling Mill in Nigeria. International Journal of Environmental Monitoring and Protection. 2(4):38-46.
[3]         Omer, S. I., & Mustafa, J. A (2018). Geo-environmental evaluation of shewasoor soil, Kirkuk/NE Iraq. Kirkuk University Journal /Scientific Studies (KUJSS). 13(2):82-100.
[4]         Omotehinse, A. O., & Ako, B. D (2019). The environmental implications of the exploration and exploitation of solid minerals in Nigeria with a special focus on the tin in Jos and coal in Enugu. Journal of Sustainable Mining. 18(1):18-24.
[5]         Onisoya, J., Bassim, A., & Richard, G. Z (2019). Risk assessment of heavy metals in soil based on the geographic information system-Kriging technique in Anka, Nigeria. Environ. Eng. Res, 24(1): 150-158. https://doi.org/10.4491/eer.2018.130
[6]         Uzoekwe, A. S., & Mbamalu, M (2020). Heavy metal pollution status and risk assessment on area with artisanal mining activities. Journal of Toxicology and Environmental Health Sciences. 12(2):10-21. https://doi.org/10.5897/JTEHS2020.0456
[7]         Afeni, T. B, & Ibitolu, F (2018). Assessment of environmental impact of gemstone mining in Ijero-Ekiti, Nigeria. Mining of Mineral Deposits, 12(1):1-11. https://doi.org/10.15407/mining12.01.001.
[8]         Abiya, S. E., Odiyi, B. O., Ologundudu, F. A., Akinnifesi, O. J., & Akadiri, S (2019). Assessment of heavy metal pollution in a gold mining site in Southwestern Nigeria. Biomedical Journal of Scientific & Technical Research, 12(4):9353- 9357. https://doi.org/10.26717/BJSTR.2019.12.002276
[9]         Onifade, M., Aladejare, A. E., & Adewumi, Q. B (2020). Investigating the effects of gemstone mining on the environs: A case study of Komu in Southwestern Nigeria. International Journal of Mining and Mineral Engineering, 11(2):85-101. https://doi.org/10.1504/IJMME.2020.108640
[10]       Zahra, K., Ramin, S., Artimes, G. D., & Zeinab, A (2017). Evaluation of water quality using heavy metal index and multivariate statistical analysis in Lorestan Province, Iran. J Adv. Environ Health Res, 5:29-37. https://doi.org/10.22102/JAEHR.2017.47756
[11]       Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S (2021).  Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep, 11(1):17006. https://doi.org/10.1038/s41598-021-94616-4.
[12]       Howie, J., Tong, S., Gerber, R., & Wolff, R (2005). Air pollution and cardiopulmonary diseases in Australia: A review of epidemiological evidence. Environmental Health Journal, 5:23-39.
[13]       Gabrielyan, A. V., Shahnazaryan, G. A., & Minasyan, S. H (2018). Distribution and identification of sources of heavy metals in the Voghji River Basin impacted by mining activities (Armenia). Journal of Chemistry, 1-9. https://doi.org/10.1155/2018/7172426.
[14]       Kabir, A. S., Mohammed, S. H., Muazu, A. A., & Aishatu, M. K (2017). Assessment of heavy metals contamination of soil and water around abandoned Pb-Zn Mines in Yelu, Alkaleri Local Government Area of Bauchi State, Nigeria. International Research Journal of Public and Environmental Health, 4:72-77.
[15]       Zhang, Z., Juying, L., Mamat, Z., & QingFu, Y (2016). Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety, 12:694–101. https://doi.org/10.1016/j.ecoenv.2015.12.025
[16]       Sierra, C, Ruíz-Barzola, O., Menéndez, M., Demey, J. R., & Vicente-Villardón, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 175:72–81. https://doi.org/10.1016/j.gexplo.2017.01.002
[17]       Mehmet, I., Aysegul, A., Beytullah, E., & Gulsun, O (2019). Heavy metal profiles of agricultural soils in Sakarya, Turkey. Environ. Eng. Res, 24(3):427-433. https://doi.org/10.4491/eer.2018.274.
[18]       Guo, B., Hong, C., & Tong, W (2020). Health risk assessment of heavy metal pollution in a soil-rice system: a case study in the Jin-Qu Basin of China. Scientific Reports, 10(1):11490. https://doi.org/10.1038/s41598-020-68295-6.
[19]       Alaba, O. C., Opafunso, Z. O., & Agyei, G (2018). Health risk assessment model for lead contaminated soil in Bagega Community, Nigeria. J. Appl. Sci. Environ. Manage; 22(5):719-724. dio: https://dx.doi.org/10.4314/jasem.v22i5.17
[20]       Musilova, J., Arvay, J., Vollmannova, A., Toth, T., Tomas, J (2016). Environmental contamination by heavy metals in region with previous mining activity. Bull. Environ. Contam. Toxicol, 97(4):569-75.  doi: 10.1007/s00128-016-1907-3.
[21]       Saim, O., Sinan, M. T., & Nurtac. O (2020). Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting. Environ Eng Res, 25(2):258-265.         https://doi.org/10.4491/eer.2019.071.
[22]       Rama, K., Nishita, O., Sadiqa, A., & Sonal, B. (2021). A review on heavy metal contamination at mining sites and remedial techniques. In: IOP Conference Series: Earth and Environmental Science, Volume 796, Community Based Research and Innovations in Civil Engineering, 18-19 March 2021, Jaipur, India. DOI: 10.1088/1755-1315/796/1/012013.
[23]       Alaba, O. C., & Adesida, A. P (2017). Health risk ranking of lead contaminated sites in Bagega Community, Zamfara State, Nigeria. Journal of Human, Environment and Health Promotion, 2(4):201-211. DOI:10.29252/jhehp.2.4.201
[24]       Raymond, A.W., & Felix, E.O (2011). Heavy Metals in Contaminated Soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network, 2090-4614. https://doi.org/10.5402/2011/402647.
[25]       Alshahri, F., & El-Taher, A (2018). Assessment of Heavy and Trace Metals in Surface Soil Nearby an Oil Refinery, Saudi Arabia, Using Geoaccumulation and Pollution Indices. Arch Environ Contam Toxicol.; 75(3):390-401. https://doi.org/10.1007/s00244-018-0531-0.
[26]       Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., Kamau, L (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep, 10(1):8434. doi: 10.1038/s41598-020-65359-5.
[27]       Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ Geochem Health.; 40(6):2395-2420. https://doi.org/10.1007/s10653-018-0106-z.
[28]       Alaba, O. C., & Opafunso, Z. O (2016). Environmental assessment of lead contaminated site from artisanal gold mining Bagega Community, Nigeria. Archives of Current Research International, 5(4):1-9. DOI:10.9734/ACRI/2016/29551
[29]       Adebayo, O. E., Abosede, T. O., Temitope, O. O., & Olusegun, O. A (2017). Effects of artisanal gold mining activities on soil properties in a part of Southwestern Nigeria. Cogent Environmental Science. 3(1):1-11. https://doi.org/10.1080/23311843.2017.1305650
[30]       Wang, Z., Bao, J., Wang, T., Moryani, H. T., Kang, W., Zheng, J., Zhan, C., Xiao, W (2021). Hazardous heavy metals accumulation and health risk assessment of different vegetable species in contaminated soils from a typical mining city, Central China. Int J Environ Res Public Health, 18(5):2617. doi: 10.3390/ijerph18052617.
[31]       Rattikansukha, C., Sratongtian, S., Janta, R., & Sichum, S (2021). Health risk assessment of cadmium and mercury via seafood consumption in coastal area of Nai Thung, Nakhon Si Thammarat Province, Thailand. Walailak J Sci & Tech, 18(10): 9244.  https://doi.org/10.48048/wjst.2021.9244.
[32]       Bello, A. A., & Adegoke, C.W (2010). Evaluation of geotechnical properties of Ilesha East Southwestern Nigeria’s lateritic soil. The Pacific Journal of Science and Technology, 11(2):617-624.
[33]       Adedeji, O. A., Olafiaji, E. M., Omole, F. K., Olanibi, J. A, & Yusuff, L (2014). An Assessment of the impact of road transport on rural development: A Case Study of Obokun Local Government Area of Osun State, Nigeria, British Journal of Environmental Sciences, 2(1):34-48.
[34]       Sofoluwe, N. A., Tijani, A. A., & Baruwa, O. I (2011). Farmers’ perception and adaptation to climate in Osun State, Nigeria. African Journal of Agricultural Research, 6(20):4789-4794.
[35]       Salami, A. A (2018). Constraints to effective climate change adaptation policies and programmes in Osun State, Nigeria.  Journal of Social Sciences and Humanities, 1(1): 9-14. http://www.aascit.org/journal/jssh
[36]       Oderinde, F. O (2021). Spatio-temporal analysis of the influence of climate on plant abundance in a part of the Rainforest Belt of Southwestern Nigeria. Canadian Journal of Tropical Geography, 8(1):1-6. Canadian Journal of Tropical Geography Revue Canadienne de Géographie Tropicale CJTG (Online) / RCGT (En ligne) ISSN: 2292-4108 Vol. 8 (1):1-6. http://laurentian.ca/cjtg.  
[37]       Fashae, O. A, Ayorinde, H. A., Olusola, A. O., Obateru, R. O (2019). Landuse and surface water quality in an emerging urban city. Applied Water Science, 9(2)1-12. https://doi.org/10.1007/s13201-019-0903-2
[38]        US EPA. Soil sampling standard operating procedures [Internet]. Carlton: US EPA Archive Document, Ecology and Environment; c1997 [cited 5 February 2023]. Available from: http://www.epa.vic.gov.au/water/reuse/default.asp.https://archive.epa.gov/region9/toxic/web/pdf/ee-soilsampling-sop-env-3-13.pdf
[39]       Shahbazi, K., Marzi, M., & Rezaei, H (2020). Heavy metal concentration in the agricultural soils under the different climatic regions: a case study of Iran. Environmental Earth Sciences, 79(13):1-13. doi: 10.1007/s12665-020-09072-6.
[40]       Horwitz W, Latimer GW. Official Methods of Analysis of AOAC International, [Internet]. Carlton: AOAC International Volume 1, c2012 [cited 5 February 2023]. Available from: https://books.google.com.ng/books/about/Official_Methods_of_Analysis_of_AOAC_Int.html?id=kPe4NAEACAAJ&redir_esc=y
[41]       Baraud, F., Zaiter, A., Porée, S., & Leleyter, L (2020). New approach for determination of Cd, Cu, Cr, Ni, Pb, and Zn in sewage sludges, fired brick, and sediments using two analytical methods by microwave-induced plasma optical spectrometry and induced coupled plasma optical spectrometry. SN Appl. Sci.; 2:1536. https://doi.org/10.1007/s42452-020-03220-0
[42]       Zango, M. S., Anim-Gyampo, M., & Ampadu, B (2013). Health risks of heavy metals in selected food crops cultivated in small-scale gold-mining areas in Wassa-Amenfi-West District of Ghana. Journal of Natural Sciences Research, 3(5):96-105.
[43]       Trevor, M., Pumulo, M., Kenny, N., Nicholas, O., Gabrie, Z., Annie, M (2019). Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4:26-37.
[44]       Dusengemungu, L., Mubemba, B., Gwanama, C (2022). Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects. Sci Rep. 12:11283. https://doi.org/10.1038/s41598-022-15458-2.
 
[45]       de Vries, W., Bakker, D. J (1998). Manual for calculating critical loads of heavy metals for terrestrial ecosystems; guidelines for critical limits, calculation methods and input data. Institute of Environmental Sciences, Energy Research and Process Innovation Press, Netherlands, 144p.
[46]       Pattanayak, C. B (2022). Toxic effects of cadmium on clarias batrachus-A review. International Journal of All Research Education and Scientific Methods (IJARESM), 10(6): 1812-1819.
[47]       Peana, M., Pelucelli, A., Chasapis, C. T., Perlepes, S. P., Bekiari, V., Medici, S., Zoroddu. M. A (2023). Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules, 13(1)36. https://www.mdpi.com/2218-273X/13/1/3.
[48]       Srinuttrakul, W., & Yoshida, S (2012). Concentration of arsenic in soil samples collected around the monazite processing facility, Thailand. Journal of Radioanalytical and Nuclear Chemistry, 297:343-346. doi:10.1007/s10967-012-2347-0.
[49]       Huang, H. W., Lee, C. H., Yu, H. S (2019). Arsenic-induced carcinogenesis and immune dysregulation. Int J Environ Res Public Health, 16(15):2746; doi: 10.3390/ijerph16152746.
[50]       Muzaffar, S., Khan, J., Srivastava, R., Gorbatyuk, M. S., & Athar, M (2023). Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol, 39:85-110. https://doi.org/10.1007/s10565-022-09710-8.
[51]       Zeng, Q., & Zhang, A (2020). Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence. Environmental Pollution, 260:113919. https://doi.org/10.1016/j.envpol.2020.113919.
[52]       Liu, W. S., Wang, X. Y., Lu, J., Zhang, Y. M., Ye, X. M., Li, J. M., Zhao, Q. L., Wu, Z. Q., Zhou, J., & Hai, X (2020). Polymorphisms in arsenic (+3 oxidation state) methyltransferase (AS3MT) predict the occurrence of hyperleukocytosis and arsenic metabolism in APL patients treated with As2O3. Archives of Toxicology, 94:1203-1213. dio: 10.1007/s00204-020-02686-6.
[53]       Zhao, J., Li, A., Mei. Y., Zhou, Q., Li, Y., Li, K., & Xu, Q (2021). The association of arsenic exposure with hypertension and blood pressure: a systematic review and dose–response meta-analysis. Environ Pollut, 289:117914. https://doi.org/10.1016/j.envpol.2021.117914.
[54]       Li, W., Wu, L., Sun, Q., Yang, Q., Xue, J., Shi, M., Tang, H., Zhang, J., & Liu, Q (2021). MicroRNA-191 blocking the translocation of GLUT4 is involved in arsenite-induced hepatic insulin resistance through inhibiting the IRS1/AKT pathway. Ecotoxicology and Environmental Safety, 215:112130. doi:10.1016/j.ecoenv.2021.112130.
[55]       Zhou, M., Zhao, E., & Huang, R (2022). Association of urinary arsenic with insulin resistance: Cross-sectional analysis of the National Health and Nutrition Examination Survey, 2015–2016. Ecotoxicology and Environmental Safety, 231:113218. https://doi.org/10.1016/j.ecoenv.2022.113218.
[56]       Adedara, I. A., Fabunmi, A. T., Ayenitaju, F. C., Atanda, O. E., Adebowale, A. A., Ajayi, B. O., Owoeye, O., Rocha, J. B., & Farombi, E. O (2020). Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats. Neurotoxicology. 2020; 76:99-110. https://doi.org/10.1016/j.neuro.2019.10.009
[57]       Park, H. R., Sun, R., Panganiban, R. A., Christiani, D. C., Lu, Q. MicroRNA-124 reduces arsenic-induced endoplasmic reticulum stress and neurotoxicity and is linked with neurodevelopment in children. Sci Rep, 10(1):5934. dio: 10.1038/s41598-020-62594-8.
[58]       van Breda, S. G., Claessen, S. M., Lo, K., van Herwijnen, M., Brauers, K. J., Lisanti, S., Theunissen, D. H., Jennen, D. G., Gaj, S., de Kok, T. M (2015). Epigenetic mechanisms underlying arsenic-associated lung carcinogenesis. Arch Toxicol.; 89:1959-69. dio: 10.1007/s00204-014-1351-2.
[59]       Xiao, T., Zou, Z., Xue, J., Syed, B. M., Sun, J., Dai, X., Shi, M., Li, J., Wei, S., Tang, H (2021). LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environmental Pollution, 268:115810.
[60]       Osei, A., Nesta, B., Yoshinori, I., Shouta, M. M., Elvis, B., Yared, B. Y., & Mayumi, I (2017). Contamination levels and sources of heavy metals and a metalloid in surface soils in the Kumasi Metropolis, Ghana. J Health Pollution, 15:28-39.
[61]       Ololade, I. A (2014). An assessment of heavy metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5(11):970-982. dio: 10.4236/jep.2014.511098
[62]       Weissmannová, H. D., & Pavlovský, J (2017). Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview). Environ Monit Assess, 189(12):616. doi: 10.1007/s10661-017-6340-5.
[63]       Jalali, M., Antoniadis, V., & Najafi, S (2021). Assessment of trace element pollution in northern and western Iranian agricultural soils: a review. Environ Monit Assess, 193:823. https://doi.org/10.1007/s10661-021-09498-w
[64]       Javaid, A., Yousaf, W., Ahmad, SR. Application of pollution indices for the assessment of heavy metal hazards in soil using GIS approach. Arab J Geosci. 2020; 13:1212. https://doi.org/10.1007/s12517-020-06164-2.