Identifying alterations of Zafarghand porphyry copper system (Isfahan): employing singularity method and false color composite

Document Type : Research Paper

Authors

1 Department of Mining Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

2 Iranian Space Research Center, Tehran, Iran.

10.22059/ijmge.2024.376041.595164

Abstract

In recent times, geological remote sensing has greatly enhanced the ability to access alteration zones and identify potential sites for hydrothermal deposits quickly and cost-effectively. This study will utilize satellite image processing methods to map the alteration zones in exploration area of the Zafarghand. The study area is located in the NE of Isfahan and falls within the central structural zone of Iran. The Zafarghand porphyry system exhibits phyllic, potassic, propylitic, argillic alteration halos. Alterations in this study were detected using ASTER sensor imagery. Each pixel's digital number value from the satellite images, organized in a matrix, serves as a sample in a systematic grid. The singularity method algorithm was then applied as an effective structural tool to identify geochemical anomalies in the digital pixel values from ASTER images. The findings demonstrate that the singularity method, due to its structural attributes, has been successful in decision-making and highly effective to determine promising areas in the study area, especially for propylitic and phyllic alterations.

Keywords

Main Subjects


[1] Hezarkhani, A., & Ghannadpour, S.S. (2015). Exploration Information Analysis. Amirkabir University of Technology Publications.
[2] Biranvandpour, A., & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, 3, 130.
[3] Ghassemian, H. (2016). A review of remote sensing image fusion methods. Information Fusion, 32, 75–89. Elsevier B.V. doi: https://doi.org/10.1016/j.inffus.2016.03.003
[4] Van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., & Wechsler, C. (2014). Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation, 33(1), 255–269. doi: https://doi.org/10.1016/j.jag.2014.05.007
[5] Cheng, Q, Agterberg, F.P., & Bonham-Carter, G.F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56, 183–I95.
[6] Cheng, Q., Yaguang, X., & Eric, G. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52. doi: http://dx.doi.org/10.1023/A:1010109829861.
[7] ANJC (Alamut Naghsh-e Jahan Company). (2011). Initial exploration report of Zafarghand copper index, (Isfahan, Iran. 270pp. (in Persian)
[8] Sadeghian, M., & Ghafari, M. (2011). Petrogenesis of the Zafarghand Granitoid Massif (Southeast of Isfahan). Petrology, 2(6), 47-70.
[9] Aminoroayaei Yamini, M., Tutti, F., & Ahmadian, J. (2016). Hydrothermal Alteration of Porphyry Copper Deposit in the Southwest of Zafarghand with Emphasis on Mineralogical and Geochemical Changes in the Area. Journal of Earth Sciences Research, 7(25), 75-90. doi: https://dorl.net/dor/ 20.1001.1.20088299.1395.7.1.6.7.
[10] Alaminia, Z., Bagheri, H., & Salehi, M. (2017). Geochemical and geophysical investigations and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran). Journal of Economic Geology, 9(2), 29-30. doi: https:// doi.org/10.22067/econg.v9i2.56334.
[11] Aminoroayaei Yamini, M., Tutti, F., Amin Al-Raeayaei Yamini, M. R., & Ahmadian, J. (2018). Plagioclase as Evidence of Magmatic Evolution in the Zafarghand Porphyry Copper Deposit, Northeast of Isfahan. Economic Geology, 10(1), 61-76. doi: https://doi.org/10.22067/ECONG.V10I1.49039
[12] Mohammadi, S., Nedaei, A.R., & Aalami Nia, Z. (2018). Analysis of the relationship between mineralization and alteration zones with tectonic structures using remote sensing studies in south Ardestan area (northeastern Isfahan). Geotectonics, 7, 29-47. doi: http://dx.doi.org/10.22077/JT.2020.2434.1013
[13] Aminoroayaei Yamini, M., Tutti, F., Haschke, M., Ahmadian, j., & Murata, M. (2016). Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry. Geological Journal, 25(2): 263-281.
[14] Fakhari, S., Jafarirad, A., Afzal, P., & Lotfi, M. (2019). Delineation of hydrothermal alteration Zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iranian Journal of Earth Sciences, 11, 80-92. doi: https://doi.org/10.30495/ijes.2019.664780
[15] Behbahani, B., Harati, H., Afzal, P., & Lotfi, M. (2023). Determination of alteration zones applying fractal modeling and Spectral Feature Fitting (SFF) method in Saryazd porphyry copper system, central Iran. Bulletin of the Mineral Research and Exploration, 1-20. doi: http://dx.doi.org/10.19111/ bulletinofmre.1264604
[16] Saed, S., Azizi, H., Daneshvar, N., Afzal, P., Whattam, S.A., Mohammad, Y.O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International 37 (26), 11456-11482
[17] Pourgholam, M.M., Afzal, P., Adib, A., Rahbar, K., Gholinejad, M. (2022). Delineation of Iron alteration zones using spectrum-area fractal model and TOPSIS decision-making method in the Tarom Metallogenic Zone, NW Iran. Journal of Mining and Environment 13 (2), 503-525.
[18] Ghannadpour S.S, Hasiri M, Talebiesfandarani S, Jalili H. (2024) Processing of ASTER satellite images using fractal concentration-area method. Journal of Mineral Resources Engineering: Articles in Press (In Persian with English Abstract).
[19] Ghannadpour S.S, Hasiri M, Jalili H, Talebiesfandarani S. (2024). Satellite Image Processing: Application for Alteration Separation based on U-Statistic Method in Zafarghand Porphyry System (Iran). Journal of Mining and Environment 15 (2), 667-681.
[20] Ghannadpour S.S, Esmailzadeh Kalkhoran S, Jalili H, Behifar, M. (2023). Delineation of mineral potential zone using U-statistic method in processing satellite remote sensing images. International Journal of Mining and Geo-Engineering 57 (4), 445-453.
[21] Esmailzadeh Kalkhoran S, Ghannadpour S.S, Moeini Rad A, Jalili H. (2024). comparing the Performance of ASTER and LANDSAT 8 Satellite Images in Identifying Iron Oxide and Porphyry Copper Alterations in Zafarghand Region of Isfahan Province. Journal of Mineral Resources Engineering 9 (1), 41-65.
[22] Esmailzadeh Kalkhoran S, Ghannadpour S.S, Jalili H, Moeini Rad A. (2024). Investigating porphyry copper alterations and spectral behavior of related minerals using ASTER satellite images in the Zafarghand region, Isfahan. Advanced Applied Geology: Articles in Press (In Persian with English Abstract).
[23] Wang, J., & Zuo, R. (2018). Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers & Geosciences, 118, 52- 64. doi: https://doi.org/10.1016/ j.cageo.2018.05.010.
[24] Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., & Erten, O. (2018). A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189, 122- 137. doi: https://doi.org/10.1016/j.gexplo.2017.03.017
[25] Cheng, Q. (2006). GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits. In: Harris, J. (Ed.). GIS Applications in Earth Sciences, Geological Association of Canada Special Paper, 289–300.
[26] Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2), 314- 324. doi: https://doi.org/10.1016/j.oregeorev.2006.10.002
[27] Liu, Y., Xia, Q., & Carranza, E.J.M. (2019). Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration, 197, 143- 158. doi: https://doi.org/10.1016/j.gexplo.2018.11.012
[28] Yilmaz, H., Yousefi, M., Parsa, M., Sonmez, F. N., & Maghsoodi, A. (2019). Singularity mapping of bulk leach extractable gold and −80# stream sediment geochemical data in recognition of gold and base metal mineralization footprints in Biga Peninsula South, Turkey. Journal of African Earth Sciences, 153, 156–172. doi: https://doi.org/10.1016/j.jafrearsci.2019.02.015
[29] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Kreuzer, O. P. (2023). Spatially weighted singularity mapping in conjunction with random forest algorithm for mineral prospectivity modeling. International Journal of Mining and Geo-Engineering, 57(4), 455–460. doi: https://doi.org/10.22059/ IJMGE.2023.366283.595102
[30] Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M. J. (2022). Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. Journal of Geochemical Exploration, 235. doi: https://doi.org/10.1016/j.gexplo.2022.106967
[31] Xiao, F., Chen, Z., Chen, J., & Zhou, Y. (2016). A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification. Computers and Geosciences, 90, 189–201. https://doi.org/10.1016/ j.cageo.2015.11.001
[32] Sharma, R. C., Hara, K., Tateishi, R. (2018). Developing Forest Cover Composites through a Combination of Landsat-8 Optical and Sentinel-1 SAR Data for the Visualization and Extraction of Forested Areas. Journal of Imaging, 4, 105. doi: https://doi.org/10.3390/jimaging4090105
[33] Yousefi, M., & Hronsky, J. M. A. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149. doi: https://doi.org/10.1016/j.apgeochem.2023.105561
[34] Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124. doi: https://doi.org/10.1016/j.gexplo.2016.03.009
[35] Ja’afar Abubakar, A., Hashim, M., Beiranvand Pour, A., & Shehu, K. (2018). A Review of Geothermal Mapping Techniques Using Remotely Sensed Data. Science World Journal, 12(4), 2017.
[36] Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229. doi: https://doi.org/10.1016/j.gexplo.2021.106839
[37] Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. In Ore Geology Reviews (Vol. 111). Elsevier B.V. doi: https://doi.org/10.1016/j.oregeorev.2019.103005