[1] Nabatian, Gh., Rastad, E., Neubauer, F., Honarmand, M., & Ghaderi, M. (2015). Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211–241.
https://doi.org/10.1080/08120099.2015.1002001.
[2] Bialas, T., Bohlen, T., Dannowski, A., Eisenberg-Klein, G., Gassner, L., Gehrmann, R., Heeschen, K., Hölz, S., Jegen, M., Klaucke, I., Krieger, M., Mann, J., Müller, Ch., Prüßmann, J., Schicks, J., Schünemann, E., Schwalenberg, K., Sommer, M., Smilde, P. L., Spangenberg, E., Trappe, H., & Zander, T. (2020). Joint interpretation of geophysical field experiments in the Danube deep-sea fan, Black Sea.
Marine and Petroleum Geology, 121, 104551.
https://doi.org/10.1016/j.marpetgeo.2020.104551.
[3] Nappi, R., Paoletti, V., D’Antonio, D., Soldovieri, F., Capozzoli, L., Ludeno, G., Porfido, S., & Michetti, A. M. (2021). Joint interpretation of geophysical results and geological observations for detecting buried active faults: The case of the “Il Lago” plain (Pettoranello del Molise, Italy).
Remote Sensing, 13(8), 1555.
https://doi.org/10.3390/rs13081555.
[4] Marzan, I., Martí, D., Lobo, A., Alcalde, J., Ruiz, M., Alvarez-Marron, J., & Carbonell, R. (2021). Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain).
Engineering Geology, 288, 106126.
https://doi.org/10.1016/j.enggeo.2021.106126.
[5] Milano, M., Varfinezhad, R., Bizhani, H., Moghadasi, M., Nejati Kalateh, A., & Baghzendani, H. (2021). Joint interpretation of magnetic and gravity data at the Golgohar mine in Iran.
Journal of Applied Geophysics, 195, 104476.
https://doi.org/10.1016/j.jappgeo.2021.104476.
[6] Afshar, A., Norouzi, G.-H., Moradzadeh, A., & Riahi, M.-A. (2018). Application of magnetic and gravity methods to the exploration of sodium sulfate deposits: Case study: Garmab mine, Semnan, Iran.
Journal of Applied Geophysics, 159, 586-596.
https://doi.org/10.1016/j.jappgeo.2018.10.003.
[8] Zhdanov, M.S., Tu, X. and Čuma, M. (2022), Cooperative inversion of multiphysics data using joint minimum entropy constraints. Near Surface Geophysics, 20: 623-636.
https://doi.org/10.1002/nsg.12203.
[9] Abedi, M. (2022). Cooperative fuzzy-guided focused inversion for unstructured mesh modeling of potential field geophysics: A case study for imaging an oil-trapping structure.
Acta Geophysica, 70, 2077–2098.
https://doi.org/10.1007/s11600-022-00857-w.
[10] Hu, Y., Wei, X., Wu, X., Sun, J., Huang, Y., & Chen, J. (2024). Three-dimensional cooperative inversion of airborne magnetic and gravity gradient data using deep-learning techniques.
GEOPHYSICS, 89(WB67-WB79).
https://doi.org/10.1190/geo2023-0225.1.
[11] Gallardo, L. A., & Meju, M. A. (2007). Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification.
Geophysical Journal International, 169(3), 1261–1272.
https://doi.org/10.1111/j.1365-246X.2007.03366.x.
[12] Fregoso, E., & Gallardo, L. A. (2009). Cross-gradients joint 3D inversion with applications to gravity and magnetic data.
GEOPHYSICS, 74, L31-L42.
https://doi.org/10.1190/1.3119263.
[13] Miotti, F., Zerilli, A., Menezes, P. T. L., Crepaldi, J. L. S., & Viana, A. R. (2018). A new petrophysical joint inversion workflow: Advancing on reservoir’s characterization challenges.
Interpretation, 6, SG33-SG39.
https://doi.org/10.1190/INT-2017-0225.1.
[14] Astic, T., & Oldenburg, D. W. (2019). A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior.
Geophysical Journal International, 219(3), 1989–2012.
https://doi.org/10.1093/gji/ggz389
[15] Tavakoli, M., Nejati Kalateh, A., Rezaie, M., Gross, L., & Fedi, M. (2021). Sequential joint inversion of gravity and magnetic data via the cross-gradient constraint.
Geophysical Prospecting, 69(8), 1542–1559.
https://doi.org/10.1111/1365-2478.13120.
[16] Wang, K., & Yang, D. (2023). Joint inversion with petrophysical constraints using indicator functions and the extended alternating direction method of multipliers.
GEOPHYSICS, 88, R49-R64.
https://doi.org/10.1190/geo2022-0167.1.
[18] Fournier, D., & Oldenburg, D. W. (2019). Inversion using spatially variable mixed ℓp norms.
Geophysical Journal International, 218(1), 268–282.
https://doi.org/10.1093/gji/ggz156.
[19] Ardestani, V. E., Fournier, D., & Oldenburg, D. W. (2021). Correction to: Gravity and Magnetic Processing and Inversion Over the Mahallat Geothermal System Using Open Source Resources in Python.
Pure and Applied Geophysics, 178, 3289.
https://doi.org/10.1007/s00024-021-02805-z.
[21] Najmi, F., Malekzadeh Shafaroudi, A., Karimpour, M. H., & Poulson, S. R. (2023). The Bahariyeh iron oxide copper–gold deposit, Khaf-Khashmar-Bardaskan magmatic belt, NE Iran: Constraints from geochemical, fluid inclusions, and O-S isotope studies.
Ore Geology Reviews, 159, 105501.
https://doi.org/10.1016/j.oregeorev.2023.105501.
[22] Zaremotlagh, S., & Hezarkhani, A. (2016). A geochemical modeling to predict the different concentrations of REE and their hidden patterns using several supervised learning methods: Choghart iron deposit, bafq, Iran.
Journal of Geochemical Exploration, 165, 35-48.
https://doi.org/10.1016/j.gexplo.2016.02.001.
Link to the article
[23] Ziapour, S., Esmaeily, D., Khoshnoodi, K., Niroomand, S., & Simon, A. C. (2021). Mineralogy, geochemistry, and genesis of the Chahgaz (XIVA Anomaly) Kiruna-type iron oxide-apatite (IOA) deposit, Bafq district, Central Iran.
Ore Geology Reviews, 128, 103924.
https://doi.org/10.1016/j.oregeorev.2020.103924.
[24] Alibabaie, N., Esmaeily, D., Peters, S. T. M., Horn, I., Gerdes, A., Nirooamand, S., Jian, W., Mansouri, T., Tudeshki, H., & Lehmann, B. (2020). Evolution of the Kiruna-type Gol-e-Gohar iron ore district, Sanandaj-Sirjan zone, Iran.
Ore Geology Reviews, 127, 103787.
https://doi.org/10.1016/j.oregeorev.2020.103787.
[25] Ansari, A., Ghari, H., Alamdar, K., & Moradi, S. (2016). Investigation of the relationship between upward continued potential fields and depth of the causative bodies: A case study from Gol-Gohar Iron ore mine. Iranian Journal of Geophysics, 5(4), 1-12.
[26] Behnam, S., & Ramazi, H. (2019). Interpretation of geomagnetic data using power spectrum and 3D modeling of Gol-e-Gohar magnetic anomaly.
Journal of Applied Geophysics, 171, 103829.
https://doi.org/10.1016/j.jappgeo.2019.103829.
[27] Bizhani, H., Mansour Shoar, P., & Moghadasi, M. (2023). 2D Inversion of magnetic and gravity data: a case study on Golgohar mine. International Journal of Mining and Geo-Engineering, 57(1), 41-46. doi: 10.22059/ijmge.2022.342045.594969.
[28] Liu, S., Hu, X., Zhang, H., et al. (2017). 3D Magnetization Vector Inversion of Magnetic Data: Improving and Comparing Methods.
Pure and Applied Geophysics, 174, 4421–4444.
https://doi.org/10.1007/s00024-017-1654-3.
[29] Shi, X., Geng, H., & Liu, S. (2022). Magnetization Vector Inversion Based on Amplitude and Gradient Constraints.
Remote Sensing, 14(21), 5497.
https://doi.org/10.3390/rs14215497.
[30] Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications.
Computers & Geosciences, 85(Part A), 142-154.
https://doi.org/10.1016/j.cageo.2015.09.015.
[32] Nagy, D. (1966). The Gravitational Attraction of a Right Rectangular Prism.
GEOPHYSICS, 31, 362-371.
https://doi.org/10.1190/1.1439779.[33] Fournier, D. (2019) Advanced potential field data inversion with L
p-norm regularization. PhD Thesis, The University of British Columbia.
[34] Plouff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727-741.
[35] Sharma, P.V. (1966). Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of arbitrary shape. Pure and Applied Geophysics, 64, 89-109.
[38] Oldenburg, D. W. and Li, Y. (2005) Inversion for applied geophysics: A tutorial. Near-surface geophysics: Society of Exploration Geophysicists, 89-150.
[39] Rezayee, M. H., Khalaj, M., & Mizunaga, H. (2023). Structural analysis and susceptibility inversion based on ground magnetic data to map the chromite mineral resources: A case study of the Koh Safi Chromite Ore Deposit, Parwan, Afghanistan.
Geoscience Letters, 10, 43.
https://doi.org/10.1186/s40562-023-00298-3.
[40] Alibabaie, N., Esmaeily, D., Peters, S. T. M., Horn, I., Gerdes, A., Nirooamand, S., Jian, W., Mansouri, T., Tudeshki, H., & Lehmann, B. (2020). Evolution of the Kiruna-type Gol-e-Gohar iron ore district, Sanandaj-Sirjan zone, Iran.
Ore Geology Reviews, 127, 103787.
https://doi.org/10.1016/j.oregeorev.2020.103787.
[41] Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran.
Canadian Journal of Earth Sciences, 18(2), 210-265.
https://doi.org/10.1139/e81-019.
[42] Babaki, A., & Aftabi, A. (2006). Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosciences, 16 (61), 40-59. SID.
https://sid.ir/paper/31412/en
[43] Badavi, M., Atapour, H., & Mohammadi, M. (2019). Mineralogy, petrography, geochemistry of magnetite ore and sulfide minerals and the possible model of mineralization at Anomaly 3, Gol-e-Gohar, iron mine, Sirjan (Kerman). Petrology, 38, 49–79. (In Persian with English Abstract).
[44] Bayati-Rad, Y., Mirnejad, H., & Ghalamghash, J. (2013). Distribution and abundance of rare earth elements in magnetite from Gol-Gohar iron ore deposit, Sirjan-Kerman. Scientific Quarterly Journal of Geosciences, 23(90), 217–224.
[45] Iran Minerals Production and Supply Company (IMPASCO). (2017). Mineral reserve estimation report for Gol Gohar Sirjan, mine 2.
[46] Beltrão, J. F., Silva, J. B. C., & Costa, J. C. (1991). Robust polynomial fitting method for regional gravity estimation. GEOPHYSICS, 56, 80-89.
https://doi.org/10.1190/1.1442960.