[1]. Duncan, J. M., & Wrigth, S. G. (2005). Soil strength and slope stability, John Willey & Sons. Inc., Hoboken, New Jersey, 297.
[2]. Chen, C. H., Ke, C. C., & Wang, C. L. (2009). A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environmental geology, 57, 723-733.
[3]. Chen, H., & Zeng, Z. (2013). Deformation prediction of landslide based on improved back-propagation neural network. Cognitive computation, 5, 56-62.
[4]. Sah, N. K., Sheorey, P. R., & Upadhyaya, L. N. (1994, February). Maximum likelihood estimation of slope stability. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 31, No. 1, pp. 47-53). Pergamon.
[5]. Goh, A. T. (1999). Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian geotechnical journal, 36(2), 382-391.
[6]. Goh, A. T. (2000). Search for critical slip circle using genetic algorithms. Civil Engineering Systems, 17(3), 181-211.
[7]. McCombie, P., & Wilkinson, P. (2002). The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Computers and Geotechnics, 29(8), 699-714.
[8]. Lu, P., & Rosenbaum, M. S. (2003). Artificial neural networks and grey systems for the prediction of slope stability. Natural Hazards, 30, 383-398.
[9]. Yang, C. X., Tham, L. G., Feng, X. T., Wang, Y. J., & Lee, P. K. K. (2004). Two-stepped evolutionary algorithm and its application to stability analysis of slopes. Journal of computing in civil engineering, 18(2), 145-153.
[10]. Sakellariou, M. G., & Ferentinou, M. D. (2005). A study of slope stability prediction using neural networks. Geotechnical & Geological Engineering, 23, 419-445.
[11]. Ferentinou, M. D., & Sakellariou, M. G. (2007). Computational intelligence tools for the prediction of slope performance. Computers and Geotechnics, 34(5), 362-384.
[12]. Cheng, Y. M., Li, L., & Chi, S. C. (2007). Performance studies on six heuristic global optimization methods in the location of critical slip surface. Computers and Geotechnics, 34(6), 462-484.
[13]. Park, H. J., Um, J. G., & Woo, I. (2008). The evaluation of failure probability for rock slope based on fuzzy set theory and Monte Carlo simulation. In Proceedings of the 10th international symposium on landslides and engineered slopes (pp. 1943-1949).
[14]. Li, L., Chi, S., Cheng, Y., & Lin, G. (2008). Improved genetic algorithm and its application to determination of critical slip surface with arbitrary shape in soil slope. Frontiers of Architecture and Civil Engineering in China, 2, 145-150.
[15]. Choobbasti, A. J., Farrokhzad, F., & Barari, A. (2009). Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arab J Geosci 2 (4): 311–319.
[16]. Zhou, K. P., & Chen, Z. Q. (2009, December). Stability prediction of tailing dam slope based on neural network pattern recognition. In 2009 Second international conference on environmental and computer science (pp. 380-383). IEEE.
[17]. Shangguan, Z., Li, S., & Luan, M. (2009). Intelligent forecasting method for slope stability estimation by using probabilistic neural networks. Electron J Geotech Eng Bundle, 13.
[18]. Ahangar‐Asr, A., Faramarzi, A., & Javadi, A. A. (2010). A new approach for prediction of the stability of soil and rock slopes. Engineering Computations, 27(7), 878-893.
[19]. Daftaribesheli, A., Ataei, M., & Sereshki, F. (2011). Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system. Applied Soft Computing, 11(8), 4465-4473.
[20]. Chen, C., Xiao, Z., & Zhang, G. (2011). Stability assessment model for epimetamorphic rock slopes based on adaptive neuro-fuzzy inference system. Electron J Geotech Eng, 16(A), 93-107.
[21]. Das, S. K., Biswal, R. K., Sivakugan, N., & Das, B. (2011). Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environmental Earth Sciences, 64, 201-210.
[22]. Park, H. J., Um, J. G., Woo, I., & Kim, J. W. (2012). Application of fuzzy set theory to evaluate the probability of failure in rock slopes. Engineering Geology, 125, 92-101.
[23]. Erzin, Y., & Cetin, T. (2012). The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Scientia Iranica, 19(2), 188-194.
[24]. Kang, F., Li, J., & Ma, Z. (2013). An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Engineering Optimization, 45(2), 207-223.
[25]. Samui, P. (2013). Support vector classifier analysis of slope. Geomatics, Natural Hazards and Risk, 4(1), 1-12.
[26]. Erzin, Y., & Cetin, T. (2013). The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Computers & Geosciences, 51, 305-313.
[27]. Manouchehrian, A., Gholamnejad, J., & Sharifzadeh, M. (2014). Development of a model for analysis of slope stability for circular mode failure using genetic algorithm. Environmental Earth Sciences, 71, 1267-1277.
[28]. Liu, Z., Shao, J., Xu, W., Chen, H., & Zhang, Y. (2014). An extreme learning machine approach for slope stability evaluation and prediction. Natural hazards, 73, 787-804.
[29]. Xue, X., & Xiao, M. (2017). Deformation evaluation on surrounding rocks of underground caverns based on PSO-LSSVM. Tunnelling and Underground Space Technology, 69, 171-181.
[30]. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685.
[31]. Kayadelen, C., Taşkıran, T., Günaydın, O., & Fener, M. (2009). Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils. Environmental Earth Sciences, 59, 109-115.
[32]. Echanobe, J., del Campo, I., & Bosque, G. (2008). An adaptive neuro-fuzzy system for efficient implementations. Information Sciences, 178(9), 2150-2162.
[33]. Singh, R., Vishal, V., Singh, T. N., & Ranjith, P. G. (2013). A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural Computing and Applications, 23, 499-506.
[34]. Bashari, A., Beiki, M., & Talebinejad, A. (2011). Estimation of deformation modulus of rock masses by using fuzzy clustering-based modeling. International Journal of Rock Mechanics and Mining Sciences, 48(8), 1224-1234.
[35]. Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent & fuzzy systems, 2(3), 267-278.
[36]. Guillaume, S. (2001). Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on fuzzy systems, 9(3), 426-443.
[37]. Fattahi, H., Shojaee, S., Farsangi, M. A. E., & Mansouri, H. (2013). Hybrid Monte Carlo simulation and ANFIS-subtractive clustering method for reliability analysis of the excavation damaged zone in underground spaces. Computers and Geotechnics, 54, 210-221.
[37]. Iranmanesh, Z., Khoshrou, S.H. (2015). Artificial Neural Networks Based on Fuzzy System and Fuzzy Neural Networks for Stability Assessment of Rock Slope in Choghart Iron Mine. AmirKabir University of Technology, Tehran, Iran, February 2015.