[1] Alipour, R., Aminpour, H., & Dehghanzadeh, A. (2023). Investigating the effect of soil improvement by micropile method in marl soil: a case study of Bidboland, Khuzestan. Amirkabir Journal of Civil Engineering, 54(12), 4573-4588.
[2] Alidadi, S., Alipour, R., & Shakeri, M. (2022). Influence of rockfill particle breakage on long-term settlement of embankment dams. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1-11.
[3] Haeri, S. M., & Nikoonejad, K. (2023). Liquefaction Behavior of a Well-Graded Gravelly Soil under Initial Static Shear Stress in Cyclic Triaxial and Simple Shear Conditions. International Journal of Geomechanics, 23(6), 04023053.
[4] Alipour, R., Heshmati R, A. A., Karimiazar, J., Esazadefar, N., Asghari-Kaljahi, E., & Bahmani, S. H. (2022). Resistance and swelling of Tabriz marl soils stabilised using nano-silica and nano-alumina. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1-14.
[8] Law, K. T., & Ling, Y. H. (1992). Liquefaction of granular soils with non-cohesive and cohesive fines. In 10Th World Conference on Earthquake Engineering.
[9] Lade, P. v., & Yamamuro, J. A. (1997). Effects of nonplastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6).
https://doi.org/10.1139/t97-052
[10] Onyelowe, K. C., Ebid, A. M., Hanandeh, S., Moghal, A. A. B., Onuoha, I. C., Obianyo, I. I., ... & Ubachukwu, O. A. (2023). The influence of fines on the hydro-mechanical behavior of sand for sustainable compacted liner and sub-base construction applications. Asian Journal of Civil Engineering, 1-13.
[11] Pitman, T. D., Robertson, P. K., & Sego, D. C. (1994). Influence of fines on the collapse of loose sands. Canadian Geotechnical Journal, 31(5). https://doi.org/10.1139/t94-084
[12] Thevanayagam, S., Fiorillo, M., & Liang, J. (2000). Effect of non-plastic fines on undrained cyclic strength of silty sands. Proceedings of Sessions of Geo-Denver 2000 - Soil Dynamics and Liquefaction 2000, GSP 107, 295. https://doi.org/10.1061/40520(295)6
[14] Tabrizi, E. M., Tohidvand, H. R., Hajialilue-Bonab, M., Mousavi, E., & Ghassemi, S. (2023). An investigation on the strain accumulation of the lightly EICP-cemented sands under cyclic traffic loads. Journal of Road Engineering.
[16] Karim, M. E., & Alam, M. J. (2017). Effect of nonplastic silt content on undrained shear strength of sand–silt mixtures. International Journal of Geo-Engineering, 8(1).
https://doi.org/10.1186/s40703-017-0051-1
[17] Monkul, M. M., & Yamamuro, J. A. (2011). Influence of silt size and content on liquefaction behavior of sands. Canadian Geotechnical Journal, 48(6). https://doi.org/10.1139/t11-001
[18] Baki, M. A. L., Rahman, M. M., Lo, S. R., & Gnanendran, C. T. (2012). Linkage between static and cyclic liquefaction of loose sand with a range of fines contents. Canadian Geotechnical Journal, 49(8). https://doi.org/10.1139/T2012-045
[20] Papadopoulou, A., & Tika, T. (2008). The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48(5). https://doi.org/10.3208/sandf.48.713
[21] Yamamuro, J. A., & Covert, K. M. (2001). Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content. Journal of Geotechnical and Geoenvironmental Engineering, 127(4). https://doi.org/10.1061/(asce)1090-0241(2001)127:4(314)
[22] Xenaki, V. C., & Athanasopoulos, G. A. (2003). Liquefaction resistance of sand-silt mixtures: An experimental investigation of the effect of fines. Soil Dynamics and Earthquake Engineering, 23(3). https://doi.org/10.1016/S0267-7261(02)00210-5
[23] Ranga Swamy, K., Akhila, M., & Sankar, N. (2021). Effects of fines content and plasticity on liquefaction resistance of sands. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 174(6). https://doi.org/10.1680/jgeen.19.00270
[24] Porcino, D., & Diano, V. (2016). Laboratory Study on Pore Pressure Generation and Liquefaction of Low-Plasticity Silty Sandy Soils during the 2012 Earthquake in Italy. Journal of Geotechnical and Geoenvironmental Engineering, 142(10).
https://doi.org/10.1061/(asce)gt.1943-5606.0001518
[25] Lashkari, A., Falsafizadeh, S. R., & Rahman, M. M. (2021). Influence of linear coupling between volumetric and shear strains on instability and post-peak softening of sand in direct simple shear tests. Acta Geotechnica, 16(11), 3467-3488.
[26] Cherif Taiba, A., Belkhatir, M., Kadri, A., Mahmoudi, Y., & Schanz, T. (2016). Insight into the Effect of Granulometric Characteristics on the Static Liquefaction Susceptibility of Silty Sand Soils. Geotechnical and Geological Engineering, 34(1). https://doi.org/10.1007/s10706-015-9951-z
[27] Tohidvand, H. R., Hajialilue-Bonab, M., Katebi, H., Nikvand, V., & Ebrahimi-Asl, M. (2022). Monotonic and post cyclic behavior of sands under different strain paths in direct simple shear tests. Engineering Geology, 302.
https://doi.org/10.1016/j.enggeo.2022.106639
[28] Tohidvand, H. R., Maleki Tabrizi, E., Esmatkhah Irani, A., Hajialilue-Bonab, M., & Farrin, M. (2023). Effects of the Fiber Reinforcement on the Monotonic Behavior of Sands Considering Coupled Volumetric–Shear Strain Paths. International Journal of Geosynthetics and Ground Engineering, 9(4), 39.
[29] Chen, W. B., Liu, K., Feng, W. Q., & Yin, J. H. (2020). Partially drained cyclic behaviour of granular fill material in triaxial condition. Soil Dynamics and Earthquake Engineering, 139.
https://doi.org/10.1016/j.soildyn.2020.106355
[30] Suzuki, Y., Carotenuto, P., Dyvik, R., & Jostad, H. P. (2020). Experimental study of modeling partially drained dense sand behavior in monotonic triaxial compression loading tests. Geotechnical Testing Journal, 43(5). https://doi.org/10.1520/GTJ20190097
[31] Yao, C. R., Wang, B., Liu, Z. Q., Fan, H., Sun, F. H., & Chang, X. H. (2019). Evaluation of liquefaction potential in saturated sand under different drainage boundary conditions-An energy approach. Journal of Marine Science and Engineering, 7(11). https://doi.org/10.3390/jmse7110411
[34] Vaid, Y. P., & Eliadorani, A. (1998). Instability and liquefaction of granular soils under undrained and partially drained states. Canadian Geotechnical Journal, 35(6).
https://doi.org/10.1139/t98-061
[35] Gananathan, N. (2002). Partially drained response of sands. Diss. University of British Columbia.
[36] Logeswaran, P. (2005), Behaviour of sands under simultaneous changes in volume and pore pressure. Diss. Carleton University.
[37] Wu, Q. X., Xu, T. T., & Yang, Z. X. (2020). Diffuse instability of granular material under various drainage conditions: discrete element simulation and constitutive modeling. Acta Geotechnica, 15(7).
https://doi.org/10.1007/s11440-019-00885-9
[38] Chaneva, J., Kluger, M. O., Moon, V. G., Lowe, D. J., & Orense, R. P. (2023). Monotonic and cyclic undrained behaviour and liquefaction resistance of pumiceous, non-plastic sandy silt. Soil Dynamics and Earthquake Engineering, 168, 107825.
[39] Adamidis, O., & Madabhushi, S. P. G. (2018). Experimental investigation of drainage during earthquake-induced liquefaction. Geotechnique, 68(8). https://doi.org/10.1680/jgeot.16.P.090
[40] Kamai, R., (2011). Liquefaction-induced shear strain localization processes in layered soil profiles. University of California, Davis.
[41] Onyelowe, K. C., Mojtahedi, F. F., Ebid, A. M., Rezaei, A., Osinubi, K. J., Eberemu, A. O., ... & Rehman, Z. U. (2023). Selected AI optimization techniques and applications in geotechnical engineering. Cogent Engineering, 10(1), 2153419.
[42] Onyelowe, K. C., Ebid, A. M., Sujatha, E. R., Fazel-Mojtahedi, F., Golaghaei-Darzi, A., Kontoni, D. P. N., & Nooralddin-Othman, N. (2023). Extensive overview of soil constitutive relations and applications for geotechnical engineering problems. Heliyon.
[43] Ebid, A. M. (2021). 35 Years of (AI) in geotechnical engineering: state of the art. Geotechnical and Geological Engineering, 39(2), 637-690.