Geometry of the magma chamber beneath Damavand volcano (N Iran) from a joint study of gravity and magnetic data

Document Type : Research Paper

Authors

1 Institute of Geophysics, University of Tehran, Tehran, Iran.

2 Center of excellence in survey engineering and disaster management, Tehran, Iran.

3 International Institute of Earthquake Engineering and Seismology, Tehran, Iran.

10.22059/ijmge.2024.369369.595127

Abstract

Imaging the intra-sediment magma chamber in the Damavand region, northern Iran, is beyond the resolution of the local seismic observations. Gravity anomalies can precisely image the lateral extension of magma reservoir. In order to provide vertical extension of magma chamber, we apply inversion of magnetic data with a higher sensitivity to shallow structure in comparison to gravity data. More importantly, knowledge of magma chamber’s density allows prediction of its mechanical behaviour including the potential of eruption. As Damavand is estimated to be an active volcano, it is important to revisit the physical properties of the magma chamber to be able to evaluate the potential of eruption. Here, we apply the sparse norm inversion of Bouguer gravity anomaly and magnetic data to model the uppermost crust beneath Damavand volcano. Qualitative analysis of the Bouguer anomaly shows that the power of the spectrum remains almost unchanged by upward continuation using heights greater than 4 km. Thus, we conclude that the 4-km upward continued Bouguer anomaly represents the regional gravitational effects free from very shallow effects. Inversion of magnetic anomaly, interestingly, shows a susceptibility structure, with susceptibility contrast of up to ~ +0.025 SI, in the same place as density anomaly. This study proposes a 10-km wide magma chamber beneath Damavand from depth ~3 km to depth ~12 km. The resulted density structure is comparable with the obtained values from derived densities (using thermodynamic mineral phase equilibrium) based on geochemical data and those from conversion of seismic velocity to density. According to the geochemical data analysis, the lava is andesitic which is categorized among dense crustal rocks (2.8 g/cm3). But, our modeling results shows a density contrast of maximum + 0.25 g/cm3 between the magma chamber and the surrounding sedimentary rocks (with density of 2.45 g/cm3) above 5 km. Therefore, we can conclude that the shallow magma chamber, composed of dense andesite, is relatively warm and probably not completely consolidated. The high temperature of magma chamber appears to be neutralized by the impact of high density of andesite (naturally dense rocks) to result in moderate negative anomaly in tomography (i.e., ∆Vs=~ -2 %). Magma chamber’s temperature might exceed 750-800 ºC which is still beyond the solidus-liquid transition temperature of 1100 ºC. Therefore, we can conclude that the magma is no liquid and is partially consolidated.

Keywords

Main Subjects


[1] Shomali, Z.H., & Shirzad, T., (2015). Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. Journal of Seismology, 19. doi:10.1007/s10950-014-9458-8
[2] Abbassi, A., Nasrabadi, A., Tatar, M., Yaminifard, F., Abbassi, M. R., Hatzfeld, D., & Priestley, K. (2010). Crustal velocity structure in the southern edge of the Central Alborz (Iran). Journal of Geodynamics, 49, 68–78. doi:10.1016/j.jog.2009.09.044
[3] Irandoust, M.A., Priestley, K., & Sobouti, F. (2022). High-resolution lithospheric structure of the Zagros collision zone and Iranian Plateau. Journal of Geophysical Research: Solid Earth, 127, e2022JB025009. https://doi. org/10.1029/2022JB025009
[4] Mousavi, N., & Ebbing, J. (2018). Basement characterization and crustal structure beneath the Arabia–Eurasia collision (Iran): a combined gravity and magnetic study. Tectonophysics, 731–732, 155–171. https://doi.org/10.1016/j.tecto.2018.03.018
[5] Mirnejad, H., Hassanzadeh, J., Cousens, B.L., & Taylor, B.E. (2010). Geochemical evidence for deep mantle melting and lithospheric delamination as the origin of the inland Damavand volcanic rocks of northern Iran. Journal of Volcanology and Geothermal Research, 198, 288–296. doi:10.1016/j.jvolgeores.2010.09.014
[6] Mehdizadeh, H., Liotard, J.-M., & Dautria, J.-M. (2002). Geochemical characteristics of an intracontinental shoshonitic association: The example of the Damavand volcano, Iran. Comptes Rendus Geosciences, 334, 111–117.
[7] Mostafanejad, A., Shomali, Z.H., & Mottaghi, A.A., (2011). 3-D velocity structure of Damavand volcano, Iran, from local earthquake tomography. J. Asian Earth Sci., 42,1091–1096. doi:10.1016/j. jseaes.2011.03.011
[8] SoltaniMoghadam, S. (2020). Seismicity and 3D crustal structure of Central Alborz, Iran using local earthquake dataset. International Institute of Earthquake Engineering and Seismology (IIEES), PhD thesis.
[9] Cockett, R., Kang, S., Heagy, L.J., Pidlisecky, A., & Oldenburg, D.W. (2015). SimPEG: an open source framework for simulation and gradient based parameter estimation in geophysical applications. Computer & Geosciences. 85, 142–154. http://dx.doi.org/ 10.1016/j.cageo.2015.09.015
[10] Ardestani, V.E., Fournier, D., & Oldenburg, D. (2021). Gravity and magnetic processing and inversion over the Mahallat geothermal system using open source resources in Python. Pure and Applied Geophysics, 178. doi:10.1007/s00024-021-02763-6
[11] Ardestani, V.E., Fournier, D., & Oldenburg, D. (2022). A localized gravity modeling of the upper crust beneath central Zagros. Pure and Applied Geophysics. doi:10.1007/s00024-022-03065-1
[12] Ardestani, V.E., & Mousavi, N. (2023), The Moho relief beneath the Zagros collision zone through modeling of ground-based gravity data and utilizing open-source resources in Python. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-022-03221-7
[13] Fournier, D., & Oldenburg, D.W. (2019). Inversion using spatially variable mixed ℓp norms. Geophysical Journal International, 218 (1), 268–282. https://doi.org/10.1093/gji/ggz156
[14] Miller, C., Williams-Jones, G., Fournier, D., & Witter, J. (2017). 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile. Earth and Planetary Science Letters, 459, 14-27. doi:10.1016/j.epsl.2016.11.007
[15] Davidson, J., et al. (2004). The geology of Damavand volcano, Alborz Mountains, northern Iran. GSA Bulletin, 116(1/2), 16–29. doi:10.1130/B25344.1
[16] Shabanian, E., Acocella, V., Gioncada, A., Ghasemi, H., & Bellier, O. (2012). Structural control on volcanism in intraplate post collisional settings: Late Cenozoic to Quaternary examples of Iran and Eastern Turkey. Tectonics, 31, TC3013, doi:10.1029/2011TC003042
[17] Rezaeian, M., Carter, A., Hovius, N., & Allen, M.B. (2012). Cenozoic exhumation history of the Alborz Mountains, Iran: New constraints from low-temperature chronometry. Tectonics, 31, TC2004, doi:10.1029/2011TC002974
[18] Berberian, M. (1983). The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20, 163–183.
[19] Mousavi, N., & Ardestani, V.E. (2022). The nature of the South Caspian Basin: Oceanic crust formation and lithospheric mantle buoyancy. Physics of the Earth and Planetary Interiors, 325, 106863. doi: 10.1016/j.pepi.2022.106863
[20] Sodoudi, F., Yuan, X., Kind, R., Heit, B., & Sadidkhouy, A. (2009). Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophys. J. Int., 177, 733–742. doi: 10.1111/j.1365-246X.2009.04115.x
[21] Mousavi, N., &  Fullea, J. (2020). 3D thermochemical structure of lithospheric mantle beneath the Iranian plateau and surrounding areas from geophysical-petrological modeling. Geophysical Journal International, 222(2), 1295–1315. https://doi.org/10.1093/gji/ggaa262
[22] Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2019). The experimental gravity field model XGM2019e. GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.007
[23] Yousefi, E., & Friedberg, J.L. (1977). Aeromagnetic map of Iran. Quaderangle F5., Tehran, Geological Survey of Iran.Department of Geology, Kyungpook University, Daegu 702-701, Republic of Korea. E-mail: inchang@knu.ac.krSearch for other works by this author on: Oxford Academic
[24] Li, Y., & Oldenburg, D.W. (1996). 3-D inversion of magnetic data. Geophysics, 61, 394-408.
[25] Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation and some robust and resistant alternatives. J. R. Statist. Soc., 46(2), 149-192.
[26] Daubechies, I., Devore, R., Fornasier, M. & Gunturk, S. (2009). Iteratively reweighted least squares minimization for sparse recovery. Pure and Applied geophysics, 63(1).
[27] Haber, E., & Heldmann, S. (2007). An octree multi grid method for quast-static Maxvell’s equations with highly discontinuous coefficients. J. Comput. Phy., 65, 324-337.
[28] Pluff, D., (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727-41.
[29] Oldenburg, D.W. & Li, Y. (2005). Inversion for applied geophysics: A tutorial, pp. 89–150 (Chapter 5). http://library.seg.org/doi/abs/10.1190/1.9781560801719.ch5
[30] Oldenburg, D.W. & Li, Y. (1994). Subspace linear inverse method. Inverse Problems, 10, 915-935.
[31] Tikhonov, A.V., & Arsenin, V.Y. (1977).  Solution of ill-posed problems. John Wiley & Sons, Inc.
[32] Nocedal, J., & Wright, S.J. (1999). Numerical optimization: Springer publishing Co. Inc.
[33] Alatorre-Zamora, M., Campos Enriquez, J., Rosas-Elguera, J., Pena-Garcia, L., Maciel, R., & Fregoso-Becerra, E. (2015). Chapala half-graben structure inferred. A magnetometric study. Geofísica Internacional, 54, 323-342. doi:10.22201/igeof.00167169p.2015.54.4.1699
[34] Mousavi, N., Tatar, M., Shafaii Moghadam, H., & Griffin, W.L. (2023). The crust and upper mantle compositional structure beneath Damavand volcano: Mechanical characteristics and magma storage from an integrated geophysical-petrological model. Journal of Volcanology and Geothermal Research, 442, 107913. https://doi.org/10.1016/j.jvolgeores.2023.107913
[35] Connolly, J.A.D. (2005). Computation of phase equilibria by linear programming: a tool for geodynamic modelling and an application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541.
[36] Telford, W.M., Geldart, L.P. & Sheriff, R.E. (1990). Applied geophysics. 2nd Edition, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167932
[37] Federica, R., Alfredo, C., Lorenzo, & Salvatore, L. (2018). Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy). Geodinamica Acta, 30, 225-240. doi:10.1080/09853111.2018.1488912
[38] Amante, C., & Eakins, B.W., (2009). ETOPO1 arc-minute global relief model: procedures, data sources, and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp.
[39] Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: a lower crustal perspective.  Reviews of Geophysics, 33(3), 267-309.
[40] Christensen, N.I., & Mooney, W.D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100(B7), 9761-9788.