[1] Shomali, Z.H., & Shirzad, T., (2015). Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. Journal of Seismology, 19. doi:10.1007/s10950-014-9458-8
[2] Abbassi, A., Nasrabadi, A., Tatar, M., Yaminifard, F., Abbassi, M. R., Hatzfeld, D., & Priestley, K. (2010). Crustal velocity structure in the southern edge of the Central Alborz (Iran). Journal of Geodynamics, 49, 68–78. doi:10.1016/j.jog.2009.09.044
[3] Irandoust, M.A., Priestley, K., & Sobouti, F. (2022). High-resolution lithospheric structure of the Zagros collision zone and Iranian Plateau. Journal of Geophysical Research: Solid Earth, 127, e2022JB025009. https://doi. org/10.1029/2022JB025009
[4] Mousavi, N., & Ebbing, J. (2018). Basement characterization and crustal structure beneath the Arabia–Eurasia collision (Iran): a combined gravity and magnetic study.
Tectonophysics, 731–732, 155–171. https://doi.org/
10.1016/j.tecto.2018.03.018
[5] Mirnejad, H., Hassanzadeh, J., Cousens, B.L., & Taylor, B.E. (2010). Geochemical evidence for deep mantle melting and lithospheric delamination as the origin of the inland Damavand volcanic rocks of northern Iran. Journal of Volcanology and Geothermal Research, 198, 288–296. doi:10.1016/j.jvolgeores.2010.09.014
[6] Mehdizadeh, H., Liotard, J.-M., & Dautria, J.-M. (2002). Geochemical characteristics of an intracontinental shoshonitic association: The example of the Damavand volcano, Iran. Comptes Rendus Geosciences, 334, 111–117.
[7] Mostafanejad, A., Shomali, Z.H., & Mottaghi, A.A., (2011). 3-D velocity structure of Damavand volcano, Iran, from local earthquake tomography. J. Asian Earth Sci., 42,1091–1096. doi:10.1016/j. jseaes.2011.03.011
[8] SoltaniMoghadam, S. (2020). Seismicity and 3D crustal structure of Central Alborz, Iran using local earthquake dataset. International Institute of Earthquake Engineering and Seismology (IIEES), PhD thesis.
[9] Cockett, R., Kang, S., Heagy, L.J., Pidlisecky, A., & Oldenburg, D.W. (2015). SimPEG: an open source framework for simulation and gradient based parameter estimation in geophysical applications. Computer & Geosciences. 85, 142–154. http://dx.doi.org/ 10.1016/j.cageo.2015.09.015
[10] Ardestani, V.E., Fournier, D., & Oldenburg, D. (2021). Gravity and magnetic processing and inversion over the Mahallat geothermal system using open source resources in Python. Pure and Applied Geophysics, 178. doi:10.1007/s00024-021-02763-6
[11] Ardestani, V.E., Fournier, D., & Oldenburg, D. (2022). A localized gravity modeling of the upper crust beneath central Zagros. Pure and Applied Geophysics. doi:10.1007/s00024-022-03065-1
[12] Ardestani, V.E., & Mousavi, N. (2023), The Moho relief beneath the Zagros collision zone through modeling of ground-based gravity data and utilizing open-source resources in Python. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-022-03221-7
[13] Fournier, D., & Oldenburg, D.W. (2019). Inversion using spatially variable mixed ℓp norms.
Geophysical Journal International, 218 (1), 268–282.
https://doi.org/10.1093/gji/ggz156
[14] Miller, C., Williams-Jones, G., Fournier, D., & Witter, J. (2017). 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile. Earth and Planetary Science Letters, 459, 14-27. doi:10.1016/j.epsl.2016.11.007
[15] Davidson, J., et al. (2004). The geology of Damavand volcano, Alborz Mountains, northern Iran. GSA Bulletin, 116(1/2), 16–29. doi:10.1130/B25344.1
[16] Shabanian, E., Acocella, V., Gioncada, A., Ghasemi, H., & Bellier, O. (2012). Structural control on volcanism in intraplate post collisional settings: Late Cenozoic to Quaternary examples of Iran and Eastern Turkey. Tectonics, 31, TC3013, doi:10.1029/2011TC003042
[17] Rezaeian, M., Carter, A., Hovius, N., & Allen, M.B. (2012). Cenozoic exhumation history of the Alborz Mountains, Iran: New constraints from low-temperature chronometry. Tectonics, 31, TC2004, doi:10.1029/2011TC002974
[18] Berberian, M. (1983). The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20, 163–183.
[19] Mousavi, N., & Ardestani, V.E. (2022). The nature of the South Caspian Basin: Oceanic crust formation and lithospheric mantle buoyancy. Physics of the Earth and Planetary Interiors, 325, 106863. doi: 10.1016/j.pepi.2022.106863
[20] Sodoudi, F., Yuan, X., Kind, R., Heit, B., & Sadidkhouy, A. (2009). Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophys. J. Int., 177, 733–742. doi: 10.1111/j.1365-246X.2009.04115.x
[21] Mousavi, N., & Fullea, J. (2020). 3D thermochemical structure of lithospheric mantle beneath the Iranian plateau and surrounding areas from geophysical-petrological modeling. Geophysical Journal International, 222(2), 1295–1315. https://doi.org/10.1093/gji/ggaa262
[23] Yousefi, E., & Friedberg, J.L. (1977). Aeromagnetic map of Iran.
Quaderangle F5., Tehran, Geological Survey of Iran.Department of Geology, Kyungpook University, Daegu 702-701, Republic of Korea. E-mail:
inchang@knu.ac.krSearch for other works by this author on: Oxford Academic
[24] Li, Y., & Oldenburg, D.W. (1996). 3-D inversion of magnetic data. Geophysics, 61, 394-408.
[25] Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation and some robust and resistant alternatives. J. R. Statist. Soc., 46(2), 149-192.
[26] Daubechies, I., Devore, R., Fornasier, M. & Gunturk, S. (2009). Iteratively reweighted least squares minimization for sparse recovery. Pure and Applied geophysics, 63(1).
[27] Haber, E., & Heldmann, S. (2007). An octree multi grid method for quast-static Maxvell’s equations with highly discontinuous coefficients. J. Comput. Phy., 65, 324-337.
[28] Pluff, D., (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727-41.
[29] Oldenburg, D.W. & Li, Y. (2005). Inversion for applied geophysics: A tutorial, pp. 89–150 (Chapter 5). http://library.seg.org/doi/abs/10.1190/1.9781560801719.ch5
[30] Oldenburg, D.W. & Li, Y. (1994). Subspace linear inverse method. Inverse Problems, 10, 915-935.
[31] Tikhonov, A.V., & Arsenin, V.Y. (1977). Solution of ill-posed problems. John Wiley & Sons, Inc.
[32] Nocedal, J., & Wright, S.J. (1999). Numerical optimization: Springer publishing Co. Inc.
[33] Alatorre-Zamora, M., Campos Enriquez, J., Rosas-Elguera, J., Pena-Garcia, L., Maciel, R., & Fregoso-Becerra, E. (2015). Chapala half-graben structure inferred. A magnetometric study. Geofísica Internacional, 54, 323-342. doi:10.22201/igeof.00167169p.2015.54.4.1699
[34] Mousavi, N., Tatar, M., Shafaii Moghadam, H., & Griffin, W.L. (2023). The crust and upper mantle compositional structure beneath Damavand volcano: Mechanical characteristics and magma storage from an integrated geophysical-petrological model. Journal of Volcanology and Geothermal Research, 442, 107913. https://doi.org/10.1016/j.jvolgeores.2023.107913
[35] Connolly, J.A.D. (2005). Computation of phase equilibria by linear programming: a tool for geodynamic modelling and an application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541.
[37] Federica, R., Alfredo, C., Lorenzo, & Salvatore, L. (2018). Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy). Geodinamica Acta, 30, 225-240. doi:10.1080/09853111.2018.1488912
[38] Amante, C., & Eakins, B.W., (2009). ETOPO1 arc-minute global relief model: procedures, data sources, and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp.
[39] Rudnick, R.L., & Fountain, D.M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267-309.
[40] Christensen, N.I., & Mooney, W.D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100(B7), 9761-9788.