[2] Pryor, E. J. (1965). Mineral processing. Elsevier Publishing Co. Ltd. Amsterdam – London – New York, Chapter 13, 304-305.
[3] Constant, M., Coppin, N., Dubois, F., Artoni, R., Lambrechts, J., & Legat, V. (2021). Numerical investigation of the density sorting of grains using water jigging.
Powder Technology, 393, 705–721.
doi: https://doi.org/10.1016/j.powtec.2021.07.036
[4] Viduka, S. M., Feng, Y. Q., Hapgood, K., & Schwarz, M. P. (2013). CFD-DEM Investigation of Particle Separations using a Sinusoidal Jigging Profile.
Advanced Powder Technology, 24, 328-342. doi:
https://doi.org/10.1016/j.apt.2012.11.012
[5] Viduka, S. M., Feng, Y. Q., Hapgood, K., & Schwarz, M. P. (2013). Discrete particle simulation of solid separation in a jigging device.
International Journal of Mineral Processing, 123, 108–119.
doi: https://doi.org/10.1016/j.minpro.2013.05.001
[6] Srinivasan R., B.K. Mishra, and S.P. Mehrotra. 1999. Simulation of particle stratification in jigs.
Coal Preparation 20(1-2):55–70.
doi:10.1080/07349349908945592
[7] Mayer F.W. 1964. Fundamentals of a potential theory of the jigging process. 7th International Mineral Processing Congress 7:75–97.
[8] Tavares L.M., and R.P. King. 1995. A useful model for the calculation of the performance of batch and continuous jigs.
Coal Prep. 15:99–128.
doi:10.1080/07349349508905291
[9] Beck A.J.G., and P.N. Holtham. 1993. Computer simulation of particle stratification in a two-dimensional batch jig.
Mineral Engineering 6(5):523–532.
doi:10.1016/0892-6875(93)90179-Q
[10] Fatahi M.R., and A. Farzanegan. 2017. DEM simulation of laboratory Knelson concentrator to study the effects of feed properties and operating parameters.
Advanced Powder Technology 28(6):1443–1458.
doi:10.1016/j. apt.2017.03.011
[11] Mishra B.K., and S.P. Mehrotra. 1998. Modelling of particle stratification in jigs by the discrete element method.
Mineral Engineering 11(6):511–522.
doi:10.1016/S0892-6875(98)00033-8
[12] Mishra B.K., and S.P. Mehrotra. 2001. A jig model based on the discrete element method and its experimental validation.
International Journal of Mineral Processing 63(4):177–189.
doi:10.1016/S0301-7516(01)00053-9
[13] Mukherjee A.K., and B.K. Mishra. 2006. An integral assessment of the role of critical process parameters on jigging.
International Journal of Mineral Processing 81(3):187–200.
doi:10.1016/j. minpro.2006.08.005
[14] Mukherjee A.K., and B.K. Mishra. 2007. Experimental and simulation studies on the role of fluid velocity during particle separation in a liquid–solid fluidized bed.
International Journal of Mineral Processing 82(4):211–221.
doi:10.1016/j. minpro.2006.11.006
[15] Solnordal C.B., T. Hughes, S. Gray, and P.M. Schwarz. 2009. CFD Modelling of a Novel Gravity Separation Device. 7th International Conference on CFD in the Minerals and Process Industries, CSIRO Melbourne Australia 9-11.
[16] Xia Y.K. 2007. Applications of Computational Fluid Dynamics (CFD) Tools for Gravity Concentrators in Coal Preparation.
Chemical Product and Process Modeling 2(1).
doi:10.2202/1934-2659.1028
[17] Xia Y.K., and F.F. Peng. 2007. Numerical simulation of behavior of fine coal in oscillating flows.
Mineral Engineering 20:113–123.
doi:10.1016/ j. mineng.2006.06.004
[18] Xia Y.K., F.F. Peng, and E.Wolfe. 2007. CFD simulation of fine coal segregation and stratification in jigs.
International Journal of Mineral Processing 82: 164–176.
doi:10.1016/ j. minpro.2006.10.004.
[19] Asakura K., M. Mizuno, M. Nagao, and S. Harada. 2007. Numerical simulation of particle motion in a jig separator.
5th Joint ASME/JSME Fluids Engineering Conference, San Diego, California USA. Volume 1:385-391.
doi:10.1115/FEDSM2007-37158
[20] Dong K.J., S.B. Kuang, A. Vince, T. Hughes, and A.B. Yu. 2010. Numerical simulation of the in-line pressure jig unit in coal preparation.
Mineral Engineering 23(4):301–312.
doi:10.1016/j. mineng.2009.10.009
[22] Panda L., A.K. Sahoo, A. Tripathy, S.K. Biswal, and A.K. Sahu. 2012. Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal.
Fuel 97:151–156.
doi:10.1016/ j. fuel.2012.02.018
[23] Ahmed M.M. 2011. Optimization of a jigging process using statistical technique.
International Journal of Coal Preparation and Utilization 31:112–123. doi:
10.1080/19392699.2010.549383
[24] Shuai, L., Runquan, Y., Caili, W., Yang, S., & Huaifa, W. (2022). Simulation of the solid particles behavior in 3D stirred tank using CFD-DEM coupling approach.
Particulate Science and Technology, 40(8), 911–21. doi:
https://doi.org/10.1080/02726351.2021.2025179
[25] Che, H., Werner, D., Seville, J., Wheldon, T. K., & Windows-Yule, K. (2023). Evaluation of coarse-grained CFD-DEM models with the validation of PEPT measurements.
Particuology,
82, 48–63. doi:
https://doi.org/10.1016/j.partic.2022.12.018
[26] Razavi F., A. Komrakova, and C.F. Lange. 2021. CFD–DEM Simulation of Sand-Retention Mechanisms in Slurry Flow.
Energies 14(13):3797.
doi:10.3390/en14133797
[27] Di Felice R. 1994. The voidage function for fluid–particle interaction systems.
International Journal of Multiphase Flow 20(1):153–159.
doi:10.1016/0301-9322(94)90011-6
[28] ESSS Rocky. 2021. Release 4.5.2, User Manual, ESSS Rocky DEM, S.R.L
[29] Kolahi, S., Jahani-Chegeni, M., & Seifpanahi-Shabani, K. (2021). Investigation of the effect of industrial ball mill liner type on their comminution mechanism using DEM.
International journal of mining and geo-engineering, 55(2), 97-107. doi:
https://doi.org/10.22059/IJMGE.2020.289423.594826
[30] Ansys, (2021). Release 2021 R2, Ansys Fluent Theory Guide.
[31] Alobaid, F., Baraki, N., and B. Epple. 2014. Investigation into improving the efficiency and accuracy of CFD/DEM simulations. Particuology, 16, 41-53.
doi:10.1016/ j. partic.2013.11.004.
[32] Crespo E.F. 2016. Modeling segregation and dispersion in jigging beds in terms of the bed porosity distribution.
Mineral Engineering 85:38–48.
doi:10.1016/j. mineng.2015.10.012