Examining removal or reduction of suction on displacement, separation of particles and energy consumption of jig by coupling computational fluid dynamics (CFD) and discrete element method (DEM)

Document Type : Research Paper

Authors

1 Department of Mining Engineering, University of Kashan, Kashan, Iran.

2 Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

10.22059/ijmge.2024.366296.595103

Abstract

  The effect of removing suction on energy consumption, displacement, and separation of particles with different sizes and densities in the jig was investigated by CFD-DEM coupling. Water velocity functions were categorized into four modes: normal sinusoidal, partial removal of suction, complete removal of suction, and optimal. Particles rise to a certain height in the normal sinusoidal mode Particles rise to a certain height in the normal sinusoidal mode, while their jump height increases in the case of partial or complete removal of suction. The jump was controlled by fluid and added (Hutch) water velocities. Increasing the maximum jump height of particles leads to a decrease in separation, an increase in operational costs, and heightened particle mixing and energy consumption. In both modes of partial or complete suction removal, the fluid velocity should be reduced. The extent of velocity reduction depends on the power required to move the particles. Simulation of coarse particles (7 and 8 mm) revealed that in complete removal of suction, the velocity should be decreased to less than half of the normal sinusoidal mode, and the hutch water velocity should be equivalent to the velocity amplitude. The energy consumption for the optimal mode was significantly lower than that of the other modes.

Keywords

Main Subjects


[2] Pryor, E. J. (1965). Mineral processing. Elsevier Publishing Co. Ltd. Amsterdam – London – New York, Chapter 13, 304-305.
[3] Constant, M., Coppin, N., Dubois, F., Artoni, R., Lambrechts, J., & Legat, V. (2021). Numerical investigation of the density sorting of grains using water jigging. Powder Technology, 393, 705–721. doi: https://doi.org/10.1016/j.powtec.2021.07.036
[4] Viduka, S. M., Feng, Y. Q., Hapgood, K., & Schwarz, M. P. (2013). CFD-DEM Investigation of Particle Separations using a Sinusoidal Jigging Profile. Advanced Powder Technology, 24, 328-342. doi: https://doi.org/10.1016/j.apt.2012.11.012
[5] Viduka, S. M., Feng, Y. Q., Hapgood, K., & Schwarz, M. P. (2013). Discrete particle simulation of solid separation in a jigging device. International Journal of Mineral Processing, 123, 108–119. doi: https://doi.org/10.1016/j.minpro.2013.05.001
[6] Srinivasan R., B.K. Mishra, and S.P. Mehrotra. 1999. Simulation of particle stratification in jigs. Coal Preparation 20(1-2):55–70. doi:10.1080/07349349908945592
[7] Mayer F.W. 1964. Fundamentals of a potential theory of the jigging process. 7th International Mineral Processing Congress 7:75–97.
[8] Tavares L.M., and R.P. King. 1995. A useful model for the calculation of the performance of batch and continuous jigs. Coal Prep. 15:99–128. doi:10.1080/07349349508905291
[9] Beck A.J.G., and P.N. Holtham. 1993. Computer simulation of particle stratification in a two-dimensional batch jig. Mineral Engineering 6(5):523–532. doi:10.1016/0892-6875(93)90179-Q
[10] Fatahi M.R., and A. Farzanegan. 2017. DEM simulation of laboratory Knelson concentrator to study the effects of feed properties and operating parameters. Advanced Powder Technology 28(6):1443–1458. doi:10.1016/j. apt.2017.03.011
[11] Mishra B.K., and S.P. Mehrotra. 1998. Modelling of particle stratification in jigs by the discrete element method. Mineral Engineering 11(6):511–522. doi:10.1016/S0892-6875(98)00033-8
[12] Mishra B.K., and S.P. Mehrotra. 2001. A jig model based on the discrete element method and its experimental validation. International Journal of Mineral Processing 63(4):177–189. doi:10.1016/S0301-7516(01)00053-9
[13] Mukherjee A.K., and B.K. Mishra. 2006. An integral assessment of the role of critical process parameters on jigging. International Journal of Mineral Processing 81(3):187–200. doi:10.1016/j. minpro.2006.08.005
[14] Mukherjee A.K., and B.K. Mishra. 2007. Experimental and simulation studies on the role of fluid velocity during particle separation in a liquid–solid fluidized bed. International Journal of Mineral Processing 82(4):211–221. doi:10.1016/j. minpro.2006.11.006
[15] Solnordal C.B., T. Hughes, S. Gray, and P.M. Schwarz. 2009. CFD Modelling of a Novel Gravity Separation Device. 7th International Conference on CFD in the Minerals and Process Industries, CSIRO Melbourne Australia 9-11.
[16] Xia Y.K. 2007. Applications of Computational Fluid Dynamics (CFD) Tools for Gravity           Concentrators in Coal Preparation. Chemical Product and Process Modeling 2(1). doi:10.2202/1934-2659.1028
[17] Xia Y.K., and F.F. Peng. 2007. Numerical simulation of behavior of fine coal in oscillating flows. Mineral Engineering 20:113–123. doi:10.1016/ j. mineng.2006.06.004
[18] Xia Y.K., F.F. Peng, and E.Wolfe. 2007. CFD simulation of fine coal segregation and stratification in jigs. International Journal of Mineral Processing 82: 164–176. doi:10.1016/ j. minpro.2006.10.004.
[19] Asakura K., M. Mizuno, M. Nagao, and S. Harada. 2007. Numerical simulation of particle motion in a jig separator. 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, California USA. Volume 1:385-391.  doi:10.1115/FEDSM2007-37158
[20] Dong K.J., S.B. Kuang, A. Vince, T. Hughes, and A.B. Yu. 2010. Numerical simulation of the in-line pressure jig unit in coal preparation. Mineral Engineering 23(4):301–312. doi:10.1016/j. mineng.2009.10.009
[21] Tavares L.M. 1999. Monte Carlo simulations on the potential energy theory of jigging. Coal Prep. 20:71–83. doi:10.1080/07349349908945593
[22] Panda L., A.K. Sahoo, A. Tripathy, S.K. Biswal, and A.K. Sahu. 2012. Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal.  Fuel 97:151–156. doi:10.1016/ j. fuel.2012.02.018
[23] Ahmed M.M. 2011. Optimization of a jigging process using statistical technique. International Journal of Coal Preparation and Utilization 31:112–123. doi:10.1080/19392699.2010.549383
[24] Shuai, L., Runquan, Y., Caili, W., Yang, S., & Huaifa, W. (2022). Simulation of the solid particles behavior in 3D stirred tank using CFD-DEM coupling approach. Particulate Science and Technology, 40(8), 911–21. doi: https://doi.org/10.1080/02726351.2021.2025179
[25] Che, H., Werner, D., Seville, J., Wheldon, T. K., & Windows-Yule, K. (2023). Evaluation of coarse-grained CFD-DEM models with the validation of PEPT measurements. Particuology, 82, 48–63. doi: https://doi.org/10.1016/j.partic.2022.12.018
[26] Razavi F., A. Komrakova, and C.F. Lange. 2021. CFD–DEM Simulation of Sand-Retention Mechanisms in Slurry Flow. Energies 14(13):3797. doi:10.3390/en14133797
[27] Di Felice R. 1994. The voidage function for fluid–particle interaction systems. International Journal of Multiphase Flow 20(1):153–159. doi:10.1016/0301-9322(94)90011-6
[28] ESSS Rocky. 2021. Release 4.5.2, User Manual, ESSS Rocky DEM, S.R.L
[29] Kolahi, S., Jahani-Chegeni, M., & Seifpanahi-Shabani, K. (2021).  Investigation of the effect of industrial ball mill liner type on their comminution mechanism using DEM. International journal of mining and geo-engineering, 55(2), 97-107. doi: https://doi.org/10.22059/IJMGE.2020.289423.594826
[30] Ansys, (2021). Release 2021 R2, Ansys Fluent Theory Guide.
[31] Alobaid, F., Baraki, N., and B. Epple. 2014. Investigation into improving the efficiency and accuracy of CFD/DEM simulations. Particuology, 16, 41-53. doi:10.1016/ j. partic.2013.11.004.
[32] Crespo E.F. 2016. Modeling segregation and dispersion in jigging beds in terms of the bed porosity distribution. Mineral Engineering 85:38–48. doi:10.1016/j. mineng.2015.10.012