[1] Ahmed T., Reservoir engineering handbook, 5th ed., Gulf Professional Publishing, Boston, 2018. https://doi.org/10.1016/C2016-0-04718-6.
[2] Ganat T.A.A.O., Modern Pressure Transient Analysis of Petroleum Reservoirs Springer, 2023. https://doi.org/10.1007/978-3-031-28889-0.
[3] Schön J.H., Physical properties of rocks: Fundamentals and principles of petrophysics, Elsevier, 2015. https://doi.org/10.1029/97EO00363.
[4] Jia C., Sepehrnoori K., Huang Z., Zhang H., Yao J., Numerical studies and analysis on reactive flow in carbonate matrix acidizing, J Petrol Sci Eng, 201 (2021) 108487. https://doi.org/10.1016/j.petrol.2021.108487.
[5] Barri A., Hassan A., Mahmoud M., Carbonate Stimulation Using Chelating Agents: Improving the Treatment Performance by Optimizing the Fluid Properties, ACS omega, 7 (2022) 8938-8949. https://doi.org/10.1021/acsomega.1c07329.
[6] Tariq Z., Aljawad M.S., Hassan A., Mahmoud M., Al-Ramadhan A., Chelating agents as acid-fracturing fluids: experimental and modeling studies, Energy Fuels, 35 (2021) 2602-2618. https://doi.org/10.1021/acs.energyfuels.0c04045.
[7] Yoo H., Kim Y., Lee W., Lee J., An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing, J Petrol Sci Eng, 168 (2018) 478-494. https://doi.org/10.1016/j.petrol.2018.05.041.
[8] Qiu X., Aidagulov G., Ghommem M., Edelman E., Brady D., Abbad M., Towards a better understanding of wormhole propagation in carbonate rocks: Linear vs. radial acid injection, J Petrol Sci Eng, 171 (2018) 570-583. https://doi.org/10.1016/j.petrol.2018.07.075.
[9] Wu Y., Salama A., Sun S., Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework, Comput Geotech, 69 (2015) 564-577. https://doi.org/10.1016/j.compgeo.2015.06.021.
[10] Liu P., Yao J., Couples G.D., Ma J., Iliev O., 3-D modelling and experimental comparison of reactive flow in carbonates under radial flow conditions, Sci Rep, 7 (2017) 17711. https://doi.org/10.1038/s41598-017-18095-2.
[11] Maheshwari P., Ratnakar R., Kalia N., Balakotaiah V., 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks, Chem Eng Sci, 90 (2013) 258-274. https://doi.org/10.1016/j.ces.2012.12.032.
[12] Daccord G., Lenormand R., Lietard O., Chemical dissolution of a porous medium by a reactive fluid—I. Model for the “wormholing” phenomenon, Chem Eng Sci, 48 (1993) 169-178. https://doi.org/10.1016/0009-2509(93)80293-Y.
[13] Hung K., Hill A., Sepehrnoori K., A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing, J Pet Technol, 41 (1989) 59-66. https://doi.org/10.2118/16886-PA.
[14] Tansey J., Balhoff M.T., Pore network modeling of reactive transport and dissolution in porous media, Transp Porous Media, 113 (2016) 303-327. https://doi.org/10.1007/s11242-016-0695-x.
[15] Algive L., Bekri S., Vizika O., Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid, SPE J, 15 (2010) 618-633. https://doi.org/10.2118/124305-PA.
[16] Panga M.K., Ziauddin M., Balakotaiah V., Two‐scale continuum model for simulation of wormholes in carbonate acidization, AlChE J, 51 (2005) 3231-3248. https://doi.org/10.1002/aic.10574.
[17] Jia C., Huang Z., Sepehrnoori K., Yao J., Modification of two-scale continuum model and numerical studies for carbonate matrix acidizing, J Petrol Sci Eng, 197 (2021) 107972. https://doi.org/10.1016/j.petrol.2020.107972.
[18] Fredd C.N., Fogler H.S., Influence of transport and reaction on wormhole formation in porous media, AIChE J, 44 (1998) 1933-1949. https://doi.org/10.1002/aic.690440902.
[19] Hoefner M., Fogler H.S., Pore evolution and channel formation during flow and reaction in porous media, AlChE J, 34 (1988) 45-54. https://doi.org/10.1002/aic.690340107.
[20] Kalia N., Balakotaiah V., Effect of medium heterogeneities on reactive dissolution of carbonates, Chem Eng Sci, 64 (2009) 376-390. https://doi.org/10.1016/j.ces.2008.10.026.
[21] Chapra S.C., Canale R.P., Numerical methods for engineers, McGraw-Hill, New York, 2021.
[22] Mahmoodi A., Javadi A., Sola B.S., Porous media acidizing simulation: New two-phase two-scale continuum modeling approach, J Petrol Sci Eng, 166 (2018) 679-692. https://doi.org/10.1016/j.petrol.2018.03.072.
[23] Safari M., Gholami R., Jami M., Ananthan M.A., Rahimi A., Khur W.S., Developing a porosity-permeability relationship for ellipsoidal grains: A correction shape factor for Kozeny-Carman's equation, J Petrol Sci Eng, 205 (2021) 108896. https://doi.org/10.1016/j.petrol.2021.108896.
[24] Balakotaiah V., West D.H., Shape normalization and analysis of the mass transfer controlled regime in catalytic monoliths, Chem Eng Sci, 57 (2002) 1269-1286. https://doi.org/10.1016/S0009-2509(02)00059-3.
[25] Reiss J., A Family of Energy Stable, Skew-Symmetric Finite Difference Schemes on Collocated Grids: A Simple Way to Avoid Odd–Even Decoupling, J Sci Comput, 65 (2015) 821-838. https://doi.org/10.1007/s10915-015-9985-7.
[26] Tang H., Dong W., Agrawal A., A phenomenon of artificial odd–even grid oscillation and its presence in domain decomposition computation: Algebraic analysis and numerical illustration, J Comput Appl Math, 333 (2018) 404-427. https://doi.org/10.1016/j.cam.2017.10.017.
[27] Adegboye Z., Yahaya Y., Ahmed U., Direct integration of general fourth order ordinary differential equations using fifth order runge-kutta method, J Niger Math Soc, 39 (2020) 69-78.
[28] Sahu Q., Fahs M., Hoteit H., Optimization and uncertainty quantification method for reservoir stimulation through carbonate acidizing, ACS Omega, 8 (2022) 539-554. https://doi.org/10.1021/acsomega.2c05564.