[1] Abdollahi, H., Saneie, R., Shafaei, S. Z., Mirmohammadi, M., Mohammadzadeh, A., & Tuovinen, O. H. (2021). Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore. Hydrometallurgy, 204, 105727.
[2] Abeidu, A. (1976). The separation of cobaltite from chalcopyrite and pyrite. Journal of the Less Common Metals, 46(2), 327-331.
[3] Akl, M. A., & Alharawi, W. S. (2018). A green and simple technique for flotation and spectrophotometric determination of cobalt (II) in pharmaceutical and water samples. Egyptian Journal of Chemistry, 61(4), 639-650.
[4] Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (2001). Handbook of mineralogy, mineralogical society of America. Chantilly, VA20151-1110. USA.
[5] Azevedo, M., Campagnol, N., Hagenbruch, T., Hoffman, K., Lala, A., & Ramsbottom, O. (2018). Lithium and Cobalt. A Tale of Two Commodities
[6] Barceloux, D. G., & Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2), 201-216.
[7] Berger, V. I., Singer, D. A., Bliss, J. D., & Moring, B. C. (2011). Ni-Co laterite deposits of the world; database and grade and tonnage models. US Geological Survey Open-File Report, 1058, 26.
[8] Bundy, R. M., Tagliabue, A., Hawco, N. J., Morton, P. L., Twining, B. S., Hatta, M., Noble, A. E., Cape, M. R., John, S. G., & Cullen, J. T. (2020). Elevated sources of cobalt in the Arctic Ocean. Biogeosciences, 17(19), 4745-4767.
[9] Burt, R. O. (1984). Gravity concentration technology.
[10] Cailteux, J., Kampunzu, A., & Batumike, M. (2005). Lithostratigraphic position and petrographic characteristics of RAT (“Roches Argilo-Talqueuses”) Subgroup, Neoproterozoic Katangan Belt (Congo). Journal of African Earth Sciences, 42(1-5), 82-94.
[11] Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T., & Butcher, A. R. (2021). Geometallurgy of cobalt ores: A review. Minerals Engineering, 160, 106656.
[12] Fisher, K. (2011). Cobalt processing developments. 6th Southern African Base Metals Conference, South Africa,
[13] Formanek, V., & Lauvernier, J. (1963). Beneficiation of cobalt arsenides of Bou-Azzer (Morocco) by gravity concentration and flotation. Proceedings of the 6th International Mineral Processing Congress, Cannes,
[14] Gleeson, S., Butt, C., & Elias, M. (2003). Nickel laterites: a review. SEG Newsletter. Society of Economic Geosciences, 54, 9-16.
[15] Haldar, S. K. (2016). Platinum-Nickel-Chromium deposits: geology, exploration and reserve base. Elsevier.
[16] Harper, E., Kavlak, G., & Graedel, T. (2012). Tracking the metal of the goblins: cobalt’s cycle of use. Environmental science & technology, 46(2), 1079-1086.
[17] Hawkins, M. (2001). Why we need cobalt. Applied Earth Science, 110(2), 66-70.
[18] Hazen, R. M., Hystad, G., Golden, J. J., Hummer, D. R., Liu, C., Downs, R. T., Morrison, S. M., Ralph, J., & Grew, E. S. (2017). Cobalt mineral ecology. American Mineralogist, 102(1), 108-116.
[19] Hitzman, M. W., Bookstrom, A. A., Slack, J. F., & Zientek, M. L. (2017). Cobalt: Styles of Deposits and the Search for Primary Deposits. US Department of the Interior, US Geological Survey.
[20] Horn, S., Gunn, A., Petavratzi, E., Shaw, R., Eilu, P., Törmänen, T., Bjerkgård, T., Sandstad, J., Jonsson, E., & Kountourelis, S. (2021). Cobalt resources in Europe and the potential for new discoveries. Ore Geology Reviews, 130, 103915.
[21] Kaya, Ş., & Topkaya, Y. A. (2011). High pressure acid leaching of a refractory lateritic nickel ore. Minerals Engineering, 24(11), 1188-1197.
[22] Keerthi, N., Deepthi, N., Krishna, N. J., Ramanjaneyulu, C., Venkatesh, V., & Rao, A. S. (2023). Machining of brass and analysing the machining characteristics by fuzzy and Taguchi. Materials Today: Proceedings.
[23] Kemal, M., Arslan, V., & Canbazoglu, M. (1996). Changing Scopes in Mineral Processing: Proceedings of the 6th international symposium, Kusadasi, Turkey, 24-26 September 1996. CRC Press.
[24] Kohad, V. (1998). Flotation of sulphide ores-HZL experience.
[25] Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023-1026.
[26] Lison, D. (2015). Cobalt. In Handbook on the Toxicology of Metals (pp. 743-763). Elsevier.
[27] Lutandula, M. S., & Maloba, B. (2013). Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. Journal of Environmental Chemical Engineering, 1(4), 1085-1090.
[28] Ma, B., Wang, C., Yang, W., Yin, F., & Chen, Y. (2013). Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate. Minerals Engineering, 50, 106-113.
[29] Mainza, A., Simukanga, S., & Witika, L. (1999). Evaluating the performance of new collectors on feed to Nkana concentrator's flotation circuit. Minerals Engineering, 12(5), 571-577.
[30] Manheim, F. (1986). Marine cobalt resources. Science, 232(4750), 600-608.
[31] Mohapatra, J., Xing, M., Elkins, J., & Liu, J. P. (2020). Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. Journal of Alloys and Compounds, 824, 153874.
[32] Moyer, S. P. (1948). Flotation of Cobaltite.
[33] Mudd, G. M., Weng, Z., Jowitt, S. M., Turnbull, I., & Graedel, T. (2013). Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews, 55, 87-98.
[34] Musuku, B. (2013). Enhancing the Recoveries and Grades of Cobalt from Nchanga and Konkola ores of KCM
[35] Petavratzi, E., Gunn, G., & Kresse, C. (2019). BGS commodity review: cobalt.
[36] Qiu, R., Huang, Z., Zheng, J., Song, Q., Ruan, J., Tang, Y., & Qiu, R. (2021). Energy models and the process of fluid-magnetic separation for recovering cobalt micro-particles from vacuum reduction products of spent lithium ion batteries. Journal of Cleaner Production, 279, 123230.
[37] Rao, G. (2000). Nickel and Cobalt ores: flotation. Encyclopedia of Separation Science, 3491-3500.
[38] Roberts, S., & Gunn, G. (2014). Cobalt. Critical metals handbook, 122-149.
[39] Schulz, K. J. (2017). Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Geological Survey.
[40] Shengo, M. L., Kime, M.-B., Mambwe, M. P., & Nyembo, T. K. (2019). A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. Journal of Sustainable Mining, 18(4), 226-246.
[41] Smith, L., Han, K., & Lawson, F. (1976). Laboratory Studies on the Recovery of Some Cobalt Minerals. Proc. Australas. Inst. Min. Metall.,
[42] Smith, O. C. (1953). Identification and Qualitative Chemical Analyses of Minerals (Vol. 75). LWW.
[43] Sverdrup, H. U., Ragnarsdottir, K. V., & Koca, D. (2017). Integrated modelling of the global cobalt extraction, supply, price and depletion of extractable resources using the world6 model. BioPhysical Economics and Resource Quality, 2, 1-29.
[44] Swartz, B., Donegan, S., & Amos, S. (2009). Processing considerations for cobalt recovery from Congolese copperbelt ores. Hydrometallurgy, 385-400.
[45] Teoh, E., Lawson, F., & Han, K. (1982). Selective flotation of cobalt-bearing minerals with use of specific collectors. TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY, 91(DEC), C148-C152.
[46] Thubakgale, C., Mbaya, R., & Kabongo, K. (2013). A study of atmospheric acid leaching of a South African nickel laterite. Minerals Engineering, 54, 79-81.
[47] Tremolada, J., Dzioba, R., Bernardo-Sánchez, A., & Menéndez-Aguado, J. M. (2010). The preg-robbing of gold and silver by clays during cyanidation under agitation and heap leaching conditions. International Journal of Mineral Processing, 94(1-2), 67-71.
[48] Zhang, P., Sun, L., Wang, H., Cui, J., & Hao, J. (2019). Surfactant-assistant atmospheric acid leaching of laterite ore for the improvement of leaching efficiency of nickel and cobalt. Journal of Cleaner Production, 228, 1-7.