Delineation of mineral potential zone using U-statistic method in processing satellite remote sensing images

Document Type : Research Paper

Authors

1 Department of Mining Engineering

2 Department of Mining Engineering, Amirkabir University of Technology (Tehran Polytechnic)

3 Iranian Space Research Center, Tehran, Iran

10.22059/ijmge.2023.364690.595097

Abstract

Delineating and mapping alteration zones in porphyry copper exploration is of special importance. In this study, satellite image processing techniques were employed to highlight alteration zones in the Zafarghand exploration area. The Zafarghand area is located in the southeastern part of Ardestan and the northwestern part of Isfahan. It is situated within the geological structural zones of central Iran and the intermediate magmatic arc of Urmia-Dokhtar. Various alteration haloes are present in this area, including phyllic, potassic, propylitic, argillic, and slightly siliceous alterations. In this study, the detection of related alterations was carried out using ASTER sensor imagery. Accordingly, considering the raster nature and digital form of satellite images, the digital number values of each pixel from the image matrices were considered as samples in a systematic network. Finally, the U spatial statistic algorithm was implemented as a moving window algorithm for determining anomaly samples in the set of digital number (DN) values of ASTER satellite image pixels. The results of this technique show that the application of the U-statistic method, considering its structural nature and neighboring samples in decision-making, has been successful and has proven to be very effective in determining the alteration zones in the Zafarghand area. It could be observed the delineated propylitic alteration by the U-statistic method is closely associated with the defined zone of propylitic alteration, which is also consistent with the field and microscopic observation of the porphyry Cu mineralization in this alteration zone. It is also observed that the determined phyllic alteration by this image processing is spatially conformable with the sericitic alteration presented in the alteration map (based on field observations and geochemical sampling).

Keywords

Main Subjects


[1] Fu, Y., Cheng, Q., Jing, L., Ye, B., & Fu, H. (2023) Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet. Remote Sensing. 15(2):439.
[2] Ranjbar, H., Honarmand, M., & Moezifar, Z. (2004). Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. Journal Asian Earth Science. 2004, 24, 237–243.
[3] Xu, Q. Jin, W. Q., & Fu, L. Q. (2007). Calibration of the detection performance for hyperspectral imager. Guang Pu Xue Yu Guang Pu Fen Xi. 27, 1676–1679.
[4] Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B., & Plaza, A. (2017). Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5, 37–78.
[5] Lee, H. S., Younan, N. H., & King, R. L. (2002). Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, USA, 24–28 June 2002; IEEE: New York, NY, USA; pp. 3317–3319.
[6] Vasefi, F., MacKinnon, N., & Farkas, D. L. (2016). Chapter 16—Hyperspectral and multispectral imaging in dermatology. In Imaging in Dermatology; Hamblin, M.R., Avci, P., Gupta, G.K., Eds.; Academic Press: Boston, MA, USA; pp. 187–201.
[7] Lu, G., & Fei, B. (2014) Medical hyperspectral imaging: A review. J. Biomed. Opt. 19, 10901.
[8] Adams, J. B., & Gillespie, A. R. (2006). Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach; Cambridge University Press: Cambridge, UK.
[9] Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data: In Summaries, Proceedings of the Fifth JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995; SCISPACE: Bangalore, India; pp. 95–101.
[10] Crowley, J. K., Brickey, D. W., & Rowan, L. C. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 29, 121–134.
[11] Rowan, L. C., Goetz, A. F. H., & Ashley, R. P. (1977). Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics. 42, 522–535.
[12] Yuhas, R. H., Goetz, A. F. H., & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Proceedings of the Summaries of 3rd Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; NTRS: Chicago, IL, USA; pp. 92–106.
[13] Ghannadpour, S. S., & Hezarkhani, A. (2016). Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. Journal of Earth System Science. 125(2), 387–401.
[14] Ghannadpour, S. S., Hezarkhani, A., Maghsoudi, A., & Farahbakhsh, E. (2015). Assessment of prospective areas for providing the geochemical anomaly maps of lead and zinc in Parkam district, Kerman, Iran. Geosciences Journal, 19(3), 431–440.
[15] Ghannadpour, S. S., & Hezarkhani, A. (2022). Prospecting rare earth elements (REEs) using radiation measurement: case study of Baghak mine, Central Sangan iron ore mine, NE of Iran. Environmental Earth Sciences. 81(14), 363.
[16] Ghannadpour, S. S., Hezarkhani, A., & Golmohammadi, A. (2018). Applying 3D U-statistic method for modeling the iron mineralization in Baghak mine, central section of Sangan iron mines. Geosystem Engineering. 21(5), 262-272.
[17] Ghannadpour, S. S., & Hezarkhani, A. (2022). A new method for determining geochemical anomalies: UN and UA fractal models. International Journal of Mining & Geo-Engineering. 56(2), 181-190.
[18] Ghannadpour, S. S., & Hezarkhani, A. (2022). Delineation of geochemical anomalies for mineral exploration using combining U-statistic method and fractal technique: UN and UA models. Applied Earth Science. 131(1), 32-40.
[19] Ghannadpour, S. S., Hezarkhani, A. Sharifzadeh, M., & Ghashghaei, F. (2019). Applying a structural multivariate method using the combination of statistical methods for the delineation of geochemical anomalies. Iranian Journal of Science and Technology, Transactions A: Science. 43, 127-140.
[20] Ghannadpour, S. S., Hezarkhani, A., & Roodpeyma, T. (2017). Combination of Separation Methods and Data Mining Techniques for Prediction of Anomalous Areas in Susanvar, Central Iran. African Journal of Earth Sciences, 134, 516–525.
[21] Ghannadpour, S. S., & Hezarkhani, A. (2018). Providing the bivariate anomaly map of Cu–Mo and Pb–Zn using combination of statistic methods in Parkam district, Iran. Carbonates and Evaporites, 33(3), 403-420.
[22] Alaminia, A., Bagheri, H., & Salehi, M. (2017). Geochemical and geophysical investigations, and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran). Journal of Economic Geology, 9(2), 295-312. (In Persian with English Abstract)
[23] Radfar, J. (1998). Geological map of Ardestan, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[24] Bahroudi, A. (2000). Geological map of Shahrab, scale 1:100,000. Geological Survey of Iran, Tehran, Iran.
[25] ANJC (Alamut Naghsh-e-Jahan Company), (2011). Initial exploration report of Zafarghand copper index, Isfahan, Iran, 270 pp. (in Persian)
[26] Sadeghian, M., & Ghaffary, M. (2011). The petrogenesis of Zafarghand granitoid pluton (SE of Ardestan). Petrology, 6, 47-70. (In Persian with English Abstract)
[27] Amidi, S. M. (1975). Contribution a ĺ etude stratigraphique, pétrologique et pétrochimique des roches magmatiques de la région Natanz-Nain-Surk (Iran Central). These université scientifique et médicale de Grenoble, France.
[28] Zahedi, M. & Amidi, S. M. (1975). 1:250000 geological map of Kashan. Geological Surevy of Iran, Tehran, Iran.
[29] Radfar, J., Alaee-Mahabadi, S., & Emami, M.H. (1993). Geological map of Kashan, scale 1:100000.Geological Survey of Iran, Tehran, Iran.
[30] Aminroayaei Yamini, M., Tutti, F., & Ahmadian, J. (2016). Geochemical and mineralogical evolution of the porphyry copper deposit in southwestern Zafarqand with emphasis on hydrothermal alteration. Researches in Earth Sciences, 7(1), 75-90. (In Persian with English Abstract)
[31] Aminroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M. & Ahmadian, J. (2018). Plagioclase as evidence of magmatic evolution in the Zafarqand porphyry copper deposit, NE Isfahan. Journal of Economic Geology, 10(1), 61-76. (In Persian with English Abstract)
[32] Mohammadi, S., Nadimi, A., & Alaminia, Z. (2018). Archive of SIDAnalysis of the relationship between mineralization and alteration zones with tectonic s tructures using remote sensing studies in south Ardestan area (northeastern Isfahan). Tectonics, 7: 29-47. (In Persian with English Abstract)
[33] Aminoroayaei Yamini, M., Tutti, F., Haschke, M., Ahmadian, j., & Murata, M. (2016). Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry. Geological Journal, 25(2): 263-281.
[34] Aminroayaei Yamini, M., Tutti, F., & Aminoroayaei Yamini, M. (2017). Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses. Mineralogy and Petrology, 111, 747-759.
[35] Sarjoughian, F., Lentz, D., Kananian, A., Ao, S., & Xiao, W. (2018). Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International Journal of Earth Sciences, 107, 1127-1151.
[36] Shahi, H., Ghavami, R., & Kamkar Rouhani, A. (2016). Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data. Journal of Geochemical Exploration, 169, 29-39.
[37] Biranvandpour, A., & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, 3,130.
[38] Li, Q., Zhang, B., Lu, L., & Lin, Q. (2014). Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 012174.
[39] Geotz, A., Billingsley, F., Elston, D., Lucchitta, I., Shoemaker, E., Abrams, M., Gillespie, A., Squries, R. (1975). Applications of ERTS Image and Image Procrssing to Regional Problems and Geologic Mapping in Northern Arizona. NASA/JPL Thechnical Reports 32-1597, NASA: Pasadena, CA, USA.
[40] Plafcan, D. (2011). Technoscientific Diplomacy: The practice of international policies in the ASTER collaboration, In Land Remote Sensing and Global Environmental Change. Ramachandran, R., Justice, C., Abrams, M., Eds., Springer: New York, NY, USA; Chapter4, 483-508.
[41] Ghannadpour, S. S., & Hezarkhani, A. (2017). Comparing U-statistic and nonstructural methods for separating anomaly and generating geochemical anomaly maps of Cu and Mo in Parkam district, Kerman, Iran. Carbonates and Evaporites, 32(3), 155-166.
[42] Ghannadpour, S. S., Hezarkhani, A., & Sabetmobarhan A. (2017). The Parkam exploration district (Kerman, Iran): Geology, alterations, and delineation of Cu- and Mo-mineralized zones using U-spatial statistic with associated software development. Journal of Earth Sciences. 28(2), 283–294.
[43] Ghannadpour, S. S., Hezarkhani, A., & Sharifzadeh, M. (2017). A method for extracting anomaly map of Au and As using combination of U-statistic and Euclidean distance methods in Susanvar district, Iran. Journal of Central South University, 24(11), 2693–2704.
[44] Ghannadpour, S. S., & Hezarkhani, A. (2020). Mineral potential mapping for Au and As using Gap statistic method in multivariate mode. Carbonates and Evaporites, 35(1), 1-11. https://doi.org/10.1007/s13146-019-00546-8
[45] Beiranvand Pour, A., & Hashim, M. (2011). Identification of hydrothermal alteration mineral for exploration of porphyry copper deposit using ASTER data, SE Iran. ELSEVER: Journal of Asian Earth Sciences, 42, 1309-1323.
[46] Oleson, R., & Doescher, Ch. (2022). Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precisin Terrain Corrected Registered At-sensor Radiance Product (AST_L1T). Department of the Interior U.S Geological Survey, Page 16.
[47] Abubakar, A. J., Hashim, M., & Beiranvand Pour, A. (2019). Remote Sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park, Nigeria. ELSEVIER: Int J AppL ObS Geoinformation, 80, 157-172.
[48] Fereydooni, H., & Mojeddifar, S. (2023). A directed matvhed filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data. ELSEVIER: Int J Appl Earth Obs Geoinformation, 63, 1-13.
[49] Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, & R. Y. (2005), Validation of the QUAC Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, SPIE Proceedings. Algorithm and Technologies for Multispectral, Hyperspectral and Ultraspacectral Imagery XI, 5806, 668-678.
[50] Ghannadpour, S. S., & Hezarkhani, A. (2015). Lead and zinc geochemical behavior based on geological characteristics in Parkam Porphyry Copper System, Kerman, Iran. Journal of Central South University, 22, 4274-4290.
[51] Ghannadpour, S. S., Hezarkhani, A., & Sabetmobarhan A. (2015). Some statistical analyses of Cu and Mo variates and geological interpretations for Parkam porphyry copper system, Kerman, Iran. Arabian Journal of Geosciences. 8, 345-355.
[52] Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., & Mauger, A. j. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99: 159-172.
[53] Grove, C. I., Hook, S. J. & Paylor III, E. D. (1992). Laboratory reflectance spectra of 160 minerals,0.4 to 2.5 micrometers.
[54] Hunt, G. R. & Salisbury, J. W. (1971). Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology, 2, 23-30.
[55] Salisbury, J. W. & D'Aria, D. M. (1992). Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment, 42(2), 83-106.
[56] Vicente, L. E. & de Souza Filho, C. R. (2011). Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115(8), 1824-1836.
[57] El-Qassas, R. A. Y., Abu-Donia, A. M., & Omar, A. E. A. (2023). Delineation of hydrothermal alteration zones associated with mineral deposits, using remote sensing and airborne geophysics data. A case study: El‑Bakriya area, Central Eastern Desert, Egypt. Acta Geodaetica et Geophysica, 5, 71–107.
[58] Shahi, H., & Kamkar-Rouhami, A. (2014). A GIS-based weights of evidence model for mineral potential mapping of hydrothermal gold deposits in Torbat-e-Heydarieh area. Journal of Mining and Environment, 5(2), 79-89.
[59] Mhangara, P. (2005). Testing the ability of ASTER (Advanced spaceborne thermal emission and reflection radiometer) to tap hydrothermal alteration zones: a case study of the Haib Porphyry Copper-Molybdenum Deposit, Namibia. MSc dissertation, Stellenbosch University. [1].    Munoz, G., Exploring for geothermal resources with electromagnetic methods. Surveys in geophysics, 2014. 35(1): p. 101-122.