[1] Lotter, N. O., Oliveira, J. F., Hannaford, A. L., & Amos, S. R. (2013). Flowsheet development for the Kamoa project–A case study. Minerals Engineering, 52: 8-20. https://doi.org/10.1016/
j.mineng.2013.02.014
[2] Asghari, M., Nakhaei, F., & VandGhorbany, O. (2019). Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(6): 761-778. https://doi.org/10.1080/15567036.2018.1520356
[3] Abdollahi, M. (2019). The Effect of texture and mineralogy on flotation recovery of molybdenite at the Sungun copper complex /concentrator plant. Master of Science Thesis in Mining Engineering – Mineral Processing, Urmia University.
[4] Rahbari, M. (2022). Process mineralogy of flotation - scavenger circuit of copper concentration plant - Sungun Copper Complex. Master of Science Thesis in Mining Engineering – Mineral Processing, Urmia University.
[5] Reyes-Bozo, L., Herrera-Urbina, R., Sáez-Navarrete, C., Otero, A. F., Godoy-Faúndez, A., & Ginocchio, R. (2011). Rougher flotation of copper sulphide ore using biosolids and humic acids. Minerals Engineering, 24(14): 1603-1608. https://doi.org/10.1016/j.mineng.2011.08.014
[6] Azizi, A., Shafaei, S. Z., Noaparast, M., & Karamoozian, M. (2013). The effect of pH, solid content, water chemistry and ore mineralogy on the galvanic interactions between chalcopyrite and pyrite and steel balls. Frontiers of Chemical Science and Engineering, 7: 464-471. https://doi.org/10.1007/s11705-013-1356-z
[7] Drzymala, J., Kowalczuk, P. B., Oteng-Peprah, M., Foszcz, D., Muszer, A., Henc, T., & Luszczkiewicz, A. (2013). Application of the grade-recovery curve in the batch flotation of Polish copper ore. Minerals Engineering, 49: 17-23. https://doi.org/10.1016/j.mineng.2013.04.024
[8] Asghar, A., Ahmad, H., & Behnam, F. (2015). Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore. International journal of mining science and technology, 25(5): 849-854.
https://doi.org/10.1016/j.ijmst.2015.07.022
[9] Han, B., Altansukh, B., Haga, K., Stevanović, Z., Jonović, R., Avramović, L., Urosević, D., Takasaki, Y., Masuda, N., Ishiyama, D., & Shibayama, A. (2018). Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. Journal of Hazardous Materials, 352: 192-203. https://doi.org/10.1016/
j.jhazmat.2018.03.014
[10] Kohan, R., Taheri, B., Heshami, M., & Maghsodi, B. (2020). Feasibility Study on the Modification and Improvement of Flotation Circuits at Enrichment Plant 2 of the Sarcheshmeh Copper Complex. Mining, Metallurgy & Exploration, 37: 555-566. https://doi.org/10.1007/s42461-020-00177-x
[11] Bilal, M., Park, I., Hornn, V., Ito, M., Hassan, F. U., Jeon, S., & Hiroyoshi, N. (2022). The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review. Minerals, 12(5): 586. https://doi.org/10.3390/min12050586
[12] Hansen, H. K., Yianatos, J. B., & Ottosen, L. M. (2005). Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size. Chemosphere, 60(10): 1497-1503. https://doi.org/10.1016/
j.chemosphere.2005.01.086
[13] Marković, Z. S., Janković, A., & Tomanec, R. (2008). Effect of particle size and liberation on flotation of a low grade porphyry copper ore. Journal of Mining and Metallurgy A: Mining, 44(1): 24-30.
[14] Cisternas, L. A., Méndez, D. A., Gálvez, E. D., & Jorquera, R. E. (2006). A MILP model for design of flotation circuits with bank/column and regrind/no regrind selection. International Journal of Mineral Processing, 79(4): 253-263. https://doi.org/10.1016/j.minpro.2006.03.005
[15] Shrimali, K., Jin, J., Hassas, B. V., Wang, X., & Miller, J. D. (2016). The surface state of hematite and its wetting characteristics. Journal of colloid and interface science, 477: 16-24. https://doi.org/10.1016/j.jcis.2016.05.030
[16] Celik, I. B., Can, N. M., & Sherazadishvili, J. O. H. N. (2010). Influence of process mineralogy on improving metallurgical performance of a flotation plant. Mineral Processing & Extractive Metallurgy Review, 32(1): 30-46. https://doi.org/10.1080/08827508.2010.509678
[17] Bakalarz, A. (2019). Chemical and mineral analysis of flotation tailings from stratiform copper ore from lubin concentrator plant (SW Poland). Mineral Processing and Extractive Metallurgy Review, 40(6): 437-446. https://doi.org/10.1080/08827508.2019.1667778
[18] Agheli, S., Hosseini, M., Haji Amin Shirazi, H., & Vaziri Hassas, B. (2020). A novel regrinding circuit to deal with fluctuation in feed grade at the Sarcheshmeh copper complex. Separation Science and Technology, 55(1): 98-111. https://doi.org/10.1080/01496395.2018.1561718
[19] Zhang, X. L., Kou, J., Sun, C. B., Zhang, R. Y., Su, M., & Li, S. F. (2021). Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings. International Journal of Minerals, Metallurgy and Materials, 28(6): 944-955. https://doi.org/10.1007/s12613-020-2093-1
[20] Greet, C. J. (2010). Flotation plant optimisation: a metallurgical guide to identifying and solving problems in flotation plants. AusIMM (Book).
[21] Rahman, R. M., Ata, S., & Jameson, G. J. (2012). The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106: 70-77. https://doi.org/10.1016/
j.minpro.2012.03.001
[22] Vinnett, L., Yianatos, J., & Alvarez, M. (2014). Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean concentrators. Minerals Engineering, 57: 12-15. https://doi.org/10.1016/j.mineng.2013.12.006
[23] Hassas, B. V., Caliskan, H., Guven, O., Karakas, F., Cinar, M., & Celik, M. S. (2016). Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492: 88-99. https://doi.org/10.1016/j.colsurfa.2015.12.025
[24] Hassanzadeh, A., Hassas, B. V., Kouachi, S., Brabcova, Z., & Celik, M. S. (2016). Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 498: 258-267. https://doi.org/10.1016/j.colsurfa.2016.03.035
[25] Kouachi, S., Hassas, B. V., Hassanzadeh, A., Çelik, M. S., & Bouhenguel, M. (2017). Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 517: 72-83. https://doi.org/10.1016/j.colsurfa.2017.01.002
[26] Wills, B. A., & Finch, J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann.
[27] Gy, P. (1981). Proportional sampling—A new philosophy of metallurgical accounting. International Journal of Mineral Processing, 8(3): 279-286. https://doi.org/10.1016/0301-7516(81)90017-X Rahbari, M. (2022). Process mineralogy of flotation - scavenger circuit of copper concentration plant - Sungun Copper Complex. Master of Science Thesis in Mining Engineering – Mineral Processing, Urmia University.